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Abstract

Significant changes in the design and operation of commercial ships have
occurrcd over the last several decades. These changes, and their impact on the intact
stability performance of ships, have motivated the development of the second generation
intact stability criteria by the IMO Subcommittee on Stability and Load Lines and on
Fishing Vesscls Safety (SLF). Parametric roll resonance, pure loss of stability, and
broaching-to are among the primary modes of stability failures which arc being
addressed. The sccond generation intact stability criteria arc planned to have a multi-
tiered structure. As the direct assessment of dynamic stability may not be neccssary for
all ships covered by IMO instruments. the first two tiers consists of level 1 and 2
vulnerability criteria that are used as a preliminary design process check of dynamic
stability failure risk. This report describes the U.S. contribution to this development,
including the threc modcs of stability failure listed above. 1t also contains a justification
of the U.S. position at SLF on dead ship eondition eriteria, as well as an overview of
possible methods for direct stability assessment procedures.
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1 Introduction

1.1 The Context of the Work

Suffieient intact stability is one of the most fundamental requirements for any
type of vessel. While different stability criteria have been developed sinee the 1930s,
including national stability standards and classification society rules, the first
international stability regulations were formulated in the 2008 Intact Stability (1S) Code,
which camc into foree in July 2010, adopted through resolution MSC.267(85) of the
Maritime Safety Committee (MSC) of the International Maritime Organization (IMO}

The origin of the first-generation intact stability criteria, which are the foundation
of the 2008 IS code, ean be traced to the pioneering work of Rahola (1939), as well as the
carly versions of the weather criterion developed in the 1950s. The history of
development and the background of these criteria are deseribed by Kobylinski and
Kastner (2003)}.

The development of the second generation of intact stability criteria started in
2002 with the re-establishment of the intact stability working group by the MO
Subcommitice on Stability and Load Lines and on Fishing Vessels Safety (SLF) — see
Francescutto (2004, 2007). However, due to other priorities, the actual work on the
second generation of intact stability criteria did not start until the 48" session of the SLF.,
in September 2005. The working group decided that the second generation of intact
stability criteria should be performance-based and address three fundamental modes of
stability failures (SLF 48/21, paragraph 4.18):

¢ Restoring arm variation problems, such as parametric excitation and pure loss of
stability;

¢ Stability under dead ship condition, defined by SOLAS regulation 11-1/3-8; and

o Maneuvering related problems in waves such as broaching-to.

A similar formulation was included in the preamble of the 2008 IS Code, as a direetion
for long-term development. However, the restoring arm variation problem was
considered as two modes of parametrie roll and pure loss of stability; hence, four stability
failure modes were considered.

The first steps in the development of the criteria have shown that the development
is a formidable task. Among the first proposals for these eriteria was that which was
contained in SLF 49/5/2 and with supporting information presented in SLF 49/INF.3.
This proposal suftered from multiple theoretieal shortcomings and was rejected by the
working group at 49™ session of SLF (July 2006). The development of second generation
of the intact stability criteria elearly required a new approach.

A significant part of that consideration was general agreement that the second
generation criteria should be based on physics of the phenomena leading to intact
stability failure. Design and modes of operations of new ships take on characteristies that
cannot, with confidence, rely solely on the statisties of failures and regression-based
techniques. Also, there was general agreement of the desirability of relating the new
eriteria to probability, or some other measures of the likelihood of stability failures. as




methods of risk analysis have gaincd greater acceptance and become standard tools in
other industries.

These considerations lead to the formulation of the framework for the second
generation of intact stability criteria. as described in SLF 50/4/4 and discussed at the 50™
session of SLF (May 2007). The key elements of this framework were the distinction
between performance-based and parametric criteria, and between probabilistic and
detcrministic criteria. Special attention was paid to probabilistic criteria: the existence of
the problem of rarity was recognized for the first time and a definition was oftered. Also,
due to the rarity of stability failures, the brute-force approach for the evaluation of
probability with numerical tools was recognized to present a significant challenge.

By that time (2007), there was already some experience in the maritime industry
on how to handle issues related to dynamic stability. Following a parametric roll
accident with APL China (France, et al., 2003), the American Bureau of Shipping (ABS)
issued a guide on assessment of parametric 1oll for containerships (ABS, 2004). The
guide offered an optional class notation by following a multi-tiered assessment
procedure. The first level, susceptibility criteria, was formulated upon changing GM in a
regular waves and the Mathieu equation. If a ship was found susceptible to parametric
roll, then a more complex criterion, severity criterion, was applied. This “severity”
criterion involved the calculation of the full GZ curve in waves and the numerical
integration of the roll equation. If the roll response was “scvere enough™ (based on somce
specified level), then advanced numerical simulations were applied and ship-specific
operational guidance was developed.

Although conservative, the susceptibility and sevcrity criteria were still capable of
distinguishing ships for which the occurrence of parametric roll was not possiblc.
Shin, ef al. (2004) describes the application of the susceptibility criteria to a tanker,
which is not known to have any problems due to parametric roll. Both susceptibility and
severity criteria have shown that parametric roll is not a problem for a tanker.

Application of the ABS guide to two serics of ships has shown that the multi-ticr
approach has sigmficant practical benefits. Because numerical simulations are cxpensive,
the susceptibility and severity check provide a formal justification for such expenditures,
ensuring that this work is done only for ships that may suffer from parametric roll.

In addition to the efforts of the classification societies, significant progress was
achieved in developing training programs in order to enable crews to be fully aware of
parametric roll phenomenon. An instructional video produced by Herbert Engincering
Corporation is one successful example of this activity .

Analysis of this experience lead to an understanding that the multi-tiercd
approach should be applied for the development of the second gencration intact stability
criteria, as a way to avoid unnecessary work: the idea of vulnerability criteria was first
formulated in the paper by Belenky, et al. (2008). see Figure 1.1. This paper also gave a
broad review of the physics background of the dynamic stability failures under
consideration. This paper, in a sense. played a role of “explanatory notes™ to SLF 50/4/4
and was further submitted for information to the 51 session of SLF (SLF 51/INF 4).

' Trailer available at hitp://www herbert.com/videos/ParametricRoll/
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correspondence group to develop preliminary specifications of the sccond generation
intact stability criteria. and 1o colleet information relevant to development of vulncrability
critcria and sample ship data 1o test these criteria (SLF 51/WDP.2).

During the discussions of the working group there was expressed a notion that, in
gencral, it is bad praetice to submit completely new technologies to SLF. 1t should be
first published in a technical journal. preferably also being presented and discussed at
tcchnical conferences. In particular, the international conferences on stability of ships and
ocean vehicles (also known as STAB) and intcrnational ship stability workshops (ISSW)
are very appropriate venues to discuss thesc advanccs. Such presentations, while being
unofficial from the IMO perspective, are very important as they allow discussion of the
technical background of new proposals among experts and therefore, improve the quality
of the future submissions. The 10™ STAB confcrence included a number of papers
presented on vulnerability criteria and direct assessment: Kobylinski (2009), Bassler, ef
al. (2009), Belenky, et al. (2009a). Umcda. et al. (2009). Shigunov, et al. (2009} and
others. These discussions were also continued at the 1" International Workshop on
Dvnamic Stability Consideration in Ship Design (DSCSD). see Kobylinski (2009a).

The Japan Society of Naval Architects and Ocean Ingineers (JASNAOEL)
established a Strategic Research Committee on Estimation Methods of Capsizing Risk for
the IMO New Gencration Stability Criteria (SCAPE Commiittee) in 2005. Outcome of
this program was reported n five sessions of JASNAOE: some other results were also
reported in English at the Osaka Colloquium (Ikeda, et al., 2008). An overview of this
work is available from SLF SI/INF.6. In the meantime, certain developments in the ficld
were affccted by the increasing consideration and practical formulation of the so-called
“critical wave groups” approach. This was used for probabilistic intact stability
asscssment during the Europcan SAFEDOR project (c.g. Themelis & Spyrou, 2007),
which allowed for a practical interfacing between the dcterministic and probabilistic
viewpoints. SNAME established a Dynamic Stability Task Group whose purpose is 1o
provide a detailed review of developments in the ficld of dynamic stability (SLF 53/3/3).
SNAME has also funded research on the next generation of stability critcnia for small
fishing boats (Womack and Johnson, 2005).

These and other discussions held in the professional community were one of the
factors why the intcrsessional correspondence group was able to sueeeed in gathering a
very large amount of information (SLF 52/INF.3) and formulating several options for
preliminary specifications of vulncrability critcria (SLF 52/3/1).

Following the 1S Code coming into foree, and refleeting the importanee of the
development of the second generation of intact stability criteria. the 52™ session of SLF
{January 2010} has changed the title of the agenda item from “Revision of Intact Stability
Code™ 10 “Development of New Generation of Intact Stability Criteria.™® The intact
stability working group agrecd on the preliminary specification for the second generation
intact stability criteria, adopting the principle of incrcasing complexity within the multi-
ticred approach {Annex 2 SLF 52/WP.1). The interscssional correspondence group was
tasked to collect additional methodologies and refine proposals on the vulnerability
criteria level 1 and 2 for all the modes of stability failures.

* The term “New generation of intacl stability crileria was replaced by the second generation inlact stability
crileria at the 53" session of SLF, following the proposal from Poland (SLF 53/3/5)




1.2 The Contents of the Work

This report deseribes the work that was commissioned by the Naval Architeeture
Division of the Office of Design and Engineering Standards of the United States Coast
Guard (CG 521) to the Naval Warfare Center Carderoek Division (NSWCCD — David
Taylor Model Basin, Seakeeping Division, Code 55) to provide technical support services
in FY 10, which covered a significant part of the intersessional period between the 52"
and 53" session of SLF (the 52/53 intersessional period). The objective of this R&D
work is to support U.S. participation in the work of the intersessional correspondence
group. In particular, the development and testing of the level 1 and 2 vulnerability
eriteria for all modes of stability failures is the top priority of this work, as they were
expected to be the main focus of the working group at the 53" session of SLF. Other
objectives included relevant development towards the direet stability assessment
methods. The work also included the development of documents to be submitted to
intersessional correspondence group and to SLF dircetly.

Based on the work deseribed in this report, the U.S. contribution to the
intersessional  correspondence  group was  developed and submitted (Annex 5
SLF 53/INF.10).

Proposals for level 1 and level 2 vulnerability eriteria were developed for
parametric roll (Seetion 2). purc loss of stability (Seetion 3) and maneuvering related
problems in waves (Section 4). All of the eriteria were tested on a sample population of
17 vessels (deseribed in Section 7). 1t was shown that all of the developed eriteria
suecessfully identified ships with a higher risk of particular modes of intact stability
failure.

At the 52" session of SLF, the intact stability working group deeided to use the
modified weather eriterion as the level 1 vulnerability criterion for the dead ship
condition (SLF 53/3). Therefore, the development was focused on the weather criterion
as a possible candidate for vulnerability eriteria. However, additional analysis has shown
that it is not likely this will be possible (Seetion 5). The same position was taken by the
Poland (SL¥ 53/3/6). Supported by the results of the analysis in Section 5 of this report,
the U.S. delegation supported the Polish position. This position turned out to be an
acceptable approach to the problem as the working group also supported these positions;
there was also a problem related with integration of the vulnerability cheek in the dead
ship condition with 2008 IS code. As a result, the working group has recommended
postponing the development related to dead ship eondition, focusing instead on another
additional mode of stability failure — excessive aceelerations (SLF 53/WP.4).

While the focus of the 52/53 intersessional period was the vulnerability eriteria,
fueled by SLF prioritics, work has also started on the direct stability assessment methods,
Seetion 6 of the report presents a comprehensive review of the methods available for
solution of the problem of rarity. This part of the work also underwent extensive
diseussion in meetings of the technical community (Belenky, et al., 2010a, 2010b).

The 52/53 intersession period was charaeterized by very intensive discussions in
the professional community coneerning vulnerability eriteria. 1t was a prominent subjeet
at the 11" I1SSW in Wageningen, the Netherlands. Some of the work ineluded in this
report was also presented and diseussed there as well (Peters, ef al., 2010).




Understanding that these discussions hold a vital element for success. the g
International Workshop on Dynamic Stability Consideration in Ship Design (DSCSD)
was organized by the U.S. Coast Guard and sponsored by Japan Ship Technology
Research Association. The workshop was held in Windsor, UK in September 2010, The
discussion among the experts revealed the tendency of vulnerability criteria proposals to
converge, indicating a good chance for agreement and harmonization during the 53"
session of SLF.

Therefore, the additional work after the workshop was mostly focused on
facilitating possiblc agreement at SLF 53. Following this, a joint proposal with Japan
was developed for the maneuvering related problems in waves (SLF 53/3/8). Lengthy
discussions with Prof. N. Umeda (Osaka University, Japan} were instrumental in reaching
the agreement on surf-riding and broaching-to issues.

Another individual whose contribution was instrumental for this work was Prof.
K. Spyrou (National Technical Umniversity of Athens, Greece). He proposed an
altcrnative to the level 1 vulnerability criteria on parametric roll.  This alternative
contained elements of the common background between several proposals which were
used for the development of the document (SLF 53/3/7). He also collaborated with
V. Belenky and C. Bassler on vulncrability criteria level 1 and 2 for surf-riding.
Recognizing Prof. K. Spyrou’s significant contribution to the work described within this
report, he was invited to be one of the authors of this rcport.

The criteria development described in this report was based on the results of
research funded by the Office of Naval Research (ONR), under the ongoing rcscarch
project, “A Probabilistic Procedure for Evaluating the Dynamic Stability and Capsizing
of Naval Vessels™ under the direction of Dr, L. Patrick Purtell, Major works developed
under this project and used in this report are Belenky and Weems (2008, 2008a).
Belenky, et al. (2008a, 2009, 2010), Bassler, et al. (2008; 2009). Another major project.
with results that werc uscd for this work, was funded by NAVSEA, under the direction of
Mr. James Webster (Bassler, et al., 2010; 2010a, Belenky and Bassler 2010, Minnick, et
al., 2010; 2011; 2011a). Technical discussions regarding the content of this report from
Dr. Arthur Recd. Mr. Martin Dipper, Jr. (NSWCCD) and Prof. N. Umeda (Osaka
University) is greatly appreciated. The authors also would like to recognize fruitful
discussions with A. Francescutto and G. Bulian (University of Trieste), B. Altmaycr,
O. Hympendahl, R. Pereira, and V. Shigunov (Germanischer Lloyd), A. Rozen and M.
Palmquist (Scaware, Sweden), and Y. Kim (Scoul National University) and H. Son
(Korean Register of Shipping).

As the development of the sccond generation intact stability criteria gains
momentum, additional people with different technical backgrounds are becoming
involved. Clear communication of the motivations, objectives, and approaches of this
development becomes paramount for the success of this enterprise. To facilitate this
communication, this report consists of a three-tiered structure in its main part (Sections:
2, 3,4 and 5). The first subsection of each of these sections is an executive level, graphic-
based briet explanation of the physical background of each of the phcnomena. The
second subsection in each of these sections describes the main mathematical model that is
used to develop the criteria; the second subsection is intended to primarily for regulators
and class society engineers who would like to gain dceper understanding of the ongoing
development. The rest of the scctions describe the technical details of the methods.



2 Vulnerability Criteria for Parametric Roll

This scction describes the development of vulnerability criteria for paramctric roll,
including some general background information on the physics of paramctric roll
phenomenon, the basic mathematical model used for detecting susccptibility to
parametric roll, and proposals and testing of levels 1 and 2 vulnerability criteria. Sample
calculations were performed using the characteristics of 17 ships.

2.1 Physical Background
2.1.1 Changing Stability in Waves

When a ship is sailing through waves, the submerged part of the hull changes.
These changes may become especially significant if the length of the wave is comparable
to the length of the ship.

As a first example, one may observe the changes that occur when the trough of a
wave is located amidships (see Figure 2.1). For most ships, the upper part of the bow
section is usually wide, due to bow flare. Bow flare provides protection from spray and
green water shipping, and also allows additional cargo to be stored on deck. As a result,
thc bow flare makes the waterplane larger, if the upper part of the bow scction becomes
partially submerged.

The upper part of the aft section of the hull is typically even larger. Apart from
cargo stowage considerations, this section must also provide room for stecring
machinery. Therefore, the after part of the waterplanc also increases. once the upper part
of the aft section becomes submerged.

4

Wave trough amidships
/ ““““""\..

/
-l /L Calm water

Figure 2.1 Changes in Hull Geometry when a Wave Trough is Amidships (a) 3D View (b)
Waterplane

Unlike the bow and aft sections, the midship section of most ships is almost
nearly wall-sided. This means that very little change occurs in the waterplane width with
variations in draft. When the wave trough is amidships, the draft at the midship section is
low, but as the hull is wall-sided in this region, there is little waterplane change. As a
result, when the wave trough is located around the midship section, the overall
waterplane arca is incrcased (see Figure 2.1b).




When the wave crest is located near amidships, the situation changes dramatieally
(Figure 2.2). The underwater part of the bow section is usually quite narrow, especially
around the waterline. Even for a bulbous bow, it is still narrower than for the scction with
bow flare. The reason for this is the consideration of resistance. The faster the ship is,
the narrower its underwater bow section must be. If the wave crest is amidships and the
wave has a length similar to a ship length, the wave trough is located around the bow
scetion. This makes the draft at the bow quite shallow. As a result, the waterplane
beeome becomes very narrow in this region,

Calm waler
Wave crest amidships#”

Figure 2.2 Changes in Hull Geometry when a Wave Crest is Amidships (a) 3D View (b) Waterplane

The underwater part of the aft section is also very narrow. The main design
consideration is to provide the propulsor with enough inflow for the speed and power of
the ship. Consideration of energy efficiency impels a designer towards a buttock flow
stern design. When the wave crest is located amidships, another wave trough is located
near the aft seetion. The draft at the stern beeomes shallow, which makcs the waterplane
very narrow in the aft part. This also is exaggerated with increased ship speed, as more
power must be handled by the propeller.

As mentioned previously, the midship section is typically more wall-sided, so it
does not significantly affect the waterplane. Figure 2.2b shows the effeet of the wave
crest amidships, where the overall waterplane is reduced in area.

As it is well known from ship hydrostatics, the waterplane arca has a significant
effect on ship stability. If the waterplane area is reduced, then so is the GZ curve (see
Figure 2.3),

i Wave trough amidships._

Calm water

A~ Calm waler
[ Wave cresl amidships

Figure 2.3 Stability Corresponding to Waterplane Changes on the Wave Trough {(Top) and the Wave
Crest (Bottom)
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2.1.2 Development of Parametric Roll

The development of the occurrence of parametric roll ts caused by periodic
stability changes occurring with a certain frequency — about twice per roll period, see
Figure 2.4.

.
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increased S!rmjg pushback, Stability is decreased, tal‘?ll"y S nepaeoy

: picking up ship rolls further BERa IR
with strong rotation speed S pushback cycle is
pushback repeated

Figure 2.4 Development of Parametrie Roll Resonanee (Parametric Roll}

| If the ship is rolled while on the wave trough, inereased stability provides stronger

| pushbaek, or restoring moment. As the ship returns to the upright position, its roll rate is
greater, since there was an additional pushback from the tncreased stability. If at that

| time, the ship has the wave erest at midship, the stability is dccreased and the ship will

| roll further to the opposite stde because of the greater spced of rolling and less resistance
to heeltng. Then, if the wave trough reaches the midship section when the ship reaches its
maximum amplitude roll. stability inereases again and the cycle starts again.

Note that there was one half of the roll cycle assoctated with the passing of an
entire wave. So, there are two waves that pass during each roll period. That means the
roll period is about twice that of the wave period (see Figure 2.5).
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Development of Parametric Roll

2.1.3 Frequency Characteristics of Parametric Roll

NZ

Parametric roll is a resonanee phenomenon and similar to roll resonanee in beam

waves (Figure 2

.6a). parametric roll has a limited frequency range (Figure 2.6b).

The principal difference between the two phenomena is that the span of the
frequeney range for parametrie roll depends on the magnitude of stability change. while
the frequency range for roll resonance depends on wave height (Figure 2.6¢). Also. if the
beam waves are far from the resonance frequencey, the ship only rolls with very small
amplitude. Parametrie roll does not exist (the amplitude 1s equal to zero) outside of the

frequency range.

a) b) \
30L Reoll resonance in heam scas for a 11N
fr wave of Three different values of _‘;f‘ 30T [Parametric roll \
-,j» wave sleepness i resonance for wave of |
M ] three different heights ||
= E_ 20 | ‘
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Figure 2.6 (a) Roll Resonance in Beam Waves (b) Parametric Roll Resonance

(¢) Frequeney Range of Parametric Roll Resonance
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2.1.4 Influence of Speed and Wave Direction

The frequency of encounter with waves changes when a ship is in motion. When
a ship is sailing in following or stern-quartering seas, the direction of waves and the ship
heading are similar (Figure 2.7a). As a result, the relative spced is small and a ship
encounters fewer waves during the same time period (compared to a zero speed case).
The encounter period is increased (and the encounter frequency is decreased) in
following or stern-quartering waves.

When a ship is sailing in head or bow-quartering seas, the direction of waves and
the ship heading are opposite (Figure 2.7b). As a result, the relative speed is large and a
ship encounters more waves during the same time (compared with the zero speed case).
The encounter period is decreased (and the encounter frequency is increased) in head or
bow-quartering waves.

a) Following and stern-quartering seas: the encounter period is longer 1hal the wave period

ae—

b) Head and bow-ouartering seas: 1he encounter period is shorter thal the wave period

—p

Figure 2.7 Influence of Speed and Wave Direction

The inception of parametric roll depends on the frequency of encounter being in
the frequency range where the parametric roll 1s possible (Figure 2.6¢). Therefore, the
development of parametric roll depends on speed and heading.
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2.2 Mathematical Description of Parametric Roll

2.2.1 Derivation of Mathieu-Type Equation

The Mathieu equation is the simplest mathematieal model of parametrie roll and it
has been extensively used to analyze this phenomenon. As this model is instrumental in
the development of vulnerability eriteria, it makes sense to repeat its derivation and
describe its properties. 1t is done mostly following Shin, ef al. (2004),

Consider a ship sailing in longitudinal seas (following or head). so there is no
wave heeling moment:

(I.+A4,)0+B,0+A-GM()dp=0 2.1

Here, By4 1s the linear (or linearized) damping coefficient, A is the weight displacement of
a ship. /; is the transverse moment of inertia, and A4y is the added mass in roll.

The variation of GAM with time is the key physieal feature to model for parametrie
roll. As this variation experienees periodie ehanges onee waves pass through, its
dependence on time is simulated with sine or ¢osine funetion:

GM(0)=GM, +GM,, cos(w 1) (2.2)

Here. o, is the wave frequeney of eneounter while GM,, is a mean value of the GM. G,
is the amplitude of the (GM changes in waves

GM, =0.5(GM_, —GM_ ) (2.3)
GM_, =05(GM__, +GM_,) (2.4)

Here. GM,,. and GAL,,, are maximal and minimal instantancous values of GM for a
number of wave erest positions along the ship hull.

Using the ecosine funetion to describe GM changes in time 1s just an
approximation to express the periodie eharaeter of the ehanges during the wave pass.
Figure 2.8 shows the ecaleulated GAf in waves compared to a cosine funetion
approximation, as a function of the position of the wave erest along the length of the hull.
As can be scen from this figure, the minimum of the ealeulated GM 1is shallower, while
the maximum is sharper in comparison with the cosine approximation in (2.2), The
calculated curve is also slightly shified.

OM. m
. 11}
Calculated Cosine
value approximation
5
Calm e
water
I t + + + {
50 (1000 S50 0 50 100 130

Position of wave crest in ship fixed coordinates, m

Figure 2.8 GM Values in Waves vs. Cosine Approximation for a Post Panamax Containership
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Substitution of the definition of (2.2) into the roll equation (2.1) and its division
by the inertial coeffieient yields the following equation for roll motion:

¢£+26¢')+(m,2,, +o) cos(m‘,t))-q):O (25)

A-GM, A-GM, 1 By
®, = [—=; o, = § D (2.6)
I, + 4, I + A4, 21, +4

In order to transform (2.5) into the standard form of the Mathieu equation, a
dimensionless time (in terms of encounter period) is introduced:

Here:

0
T=0 = (=— (2.7
o

Substitution (2.7) into the roll equation (2.5) turns it into a dimensionless form:

d ¢ do :
- —+2u dr+(( + 0, COS(T))¢ 0 (2.8)

Here, the eoefficients of equation (2.8) arc the dimensionless quantities:
p=—: o,=—"; 0,=—"2% 2.9

The next substitution eliminates damping by introdueing new variable x:
&(1) = x(1)-exp(- p7) (2.10)

This finally expresses roll in the form of the Mathieu equation by substitution equation
(2.10) into (2.8):

2

F+(p+qeos(r))-x=0 (2.11)

Here:

p=(@ 1) ¢=5 2.12)
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2.2.2 Solution of the Mathieu Equation and Its Properties

The Mathieu equation is a lincar differential equation with variable coefficients. 1t
solution eannot be expressed in elementary functions. Therefore, as the Mathicu equation
is widely used in mathematics, physics, and engineering, its solution is considered to be a
specialized funetion, known as the Mathicu function. 1t is tabulated and included in
advaneed mathematical software packages.

As is known, the Mathicu equation (2.11) may have two types of solutions
(Mathieu functions): bounded, or “stable.” (Figurc 2.9) and unbounded., commonly
referred as “unstable™ (Figure 2.10).

Whether a solution is bounded or unbounded depends on the combination of
coefficients, p and ¢. The combinations of p and ¢ values that correspond to a bounded or
unboundcd solution can be graphed in a figure that is known as the Inec-Strutt diagram
(shown in Figure 2.11). The blank areas correspond to the bounded solution, while the
shaded areas correspond to the unbounded solution.

017
0.05 1

=(3,0057

=0.1°

Figure 2.9 Bounded Solution of 1he Malhien Equalion p=0.1; ¢=0.2

10T

UG A b 5 ; 5
T8 Y00 120 14 160

51

o L
Figure 2.18 Unboundced Solution of the Mathieu Equalion p=0.15; ¢=0.2

The shadced areas, identificd with Roman numerals in Figure 2.11, correspond to
the unbounded solution and have shapes of curved triangles. Each such triangle touchces
the p-axis and. with an increase of ¢, bccomes wider. The areas with the smaller p-
intercept grow in width faster; it ean be seen at the level g = 2, the first shaded area is the
widest.

The paramcter p is seen, in equations (2.9) and (2.12), to be cqual to a difference
of the square of the ratio of natural and excitation frequencics and the square of the ratio
of the damping and the cxcitation frequencics.




Figure 2.11 Ince-Strutt Diagram

The parameter g reflects the level of GA change in waves, expressed as the
square of the frequency ratio, as can be seen in equations (2.3), (2.9) and (2.12).
Therefore, the parameter ¢ plays the role of the amplitude of parametric cxeitation, As a
result, the entire Ince-Strutt diagram can be considered in terms of the amplitude of
parametric excitation vs. the square of non-dimensional frequeney.

The first instability zone interseets the axis exactly at p = 0.25, which corresponds
to the frequeney ratio of 2, so the excitation frequencey is twice the natural roll frequency
at this point. The unbounded motion belonging to this zone is commonly referred to as
the prineipal parametrie resonance. The zoomed-in view of this zone is shown in the
insert of Figure 2.11.

The second instability zone intersects the axis at p = 1.0, where the excitation
frequency is cqual to the natural roll frequeney. Unbounded solutions belonging to this
zone are defined as the fundamental parametrie resonance.

2.2.3 Influence of Damping and Nonlinearity

The Mathieu equation (2.11) has a periodie bounded solution sinee the damping
was excluded by the substitution (2.10). This means that the corresponding roll. ¢(t).
decays with the damping deerement, p, if x(1) is a periodieal solution of the Mathieu
equation, as shown Figure 2.9,

An unbounded solution of the Mathieu equation, x(t) (as in Figure 2.10). does not

necessarily mean that rolling will be unbounded because the exponential term exp(-pit)
might undo the effeet of boundlessness by damping the solution back to a decaying form.

it also means that there is a threshold value for roll damping for each pair of
Mathicu parameters, p and g. If roll damping is less than the threshold value, roll will be
unbounded as the solution of the Mathieu equation. If the roll damping is larger than the
threshold, roll is still bounded, even if the Mathicu equation is unbounded. The
increment of the Mathieu solution is not enough to overcome the deerement of roll
damping. In addition, it is also means that with linear damping, the instability zone is
narrower and requires some finite value of GM variations even at p=1/4; i.e., it does not
touch the axis (sce Figure 2.12),
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Figure 2.12 Influenee of Damping on Paramelric Roll

The Mathieu equation, however, is only capablc of indicating paramctric roll
starts or not, Onee it starts, the amplitude grows exponentially and the solution goes into
infinity. In order make a model to stabilizc with certain amplitude, the nonlinearity of
stiffness ((GZ curve) needs to be introduced. The one of the simplest expressions is a
¢ubie parabola:

GZ()=GM -¢{1-¢°) (2.13)

Such cubic parabola models a GZ curve with an angle of vanishing stability of
I rad = 57.3 deg, an angle of maximum about 3’ rad =33 deg. while the maximum of
the GZ curvce is about 0.385 GAM. This modcl, of coursc. cannot simulate all the regulated
properties of the real 7 curve. However, it still may be used as the first expansion to
study parametric roll bchavior of a ship-like oscillator.

The simplest model of changing GZ curve in waves can be expressed by
combining (2.2) and (2.13), using the definitions in (2.6):

GZ(.1)=GM -d)-(l -4’ )-((')fn +o cos(m‘.r)) (2.14)

Figure 2.13 shows the modeled GZ curve as it changes during a one wave pass.
Substitution of the model of the GZ curve (2.14) into the lincar equation (2.5) makes it
nonlinear and capable for stabilization in the mode of parametrie roll:

§+28¢+ (02 +0? cos(,r))--(1-47)=0 (2.15)

Figure 2.14 shows the difference between nonlinear roll response with
stabilization of roll amplitude just below 30 degrees compared to lincar roll response
{solution of equation (2.5)) with unbounded growth of amplitude.
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Figure 2.13 Periodically Changed Cubic GZ Curve
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Figure 2.14 Modeling of Paramelric Roll with Mathicu Equation (Blue) and Nonlinear Equation

It can be noted from Figure 2.14, that in the beginning, both lincar and nonlinear
roll response are identical (this is natural, as the GM formula works well for small
angles). Howcever, once the amplitude exceeds 10-15 degreces, the difference between the
linear and nonlincar roll response becomes apparent. This is also clear from Figure 2.13,
as the difference between the GZ curve and its initial tangent becomes noticeable starting

{Red)

about 10-15 degrees.

The difference between the actual GZ curve and its tangent (expressed through
GM) is a key to explaining the stabilization of parametric roll. The roll amplitudes keep
incrcasing, while energy is supplied by parametric excitation. A periodic changc of
parameters is a parametric excitation. It can causc parametric resonance if it mcets the
frequency conditions. If the oscillator is linear, its natural frequency does not change and
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thc cnergy continues to be incorporated. For a ship, the instantancous (GAf changes with
roll angle. so the instantancous natural frequency also changes. This means that sooner
or later the frequency condition of parametric roll will not be satisfied and the supply of
encrgy from parametric roll will stop. Once the amount of encrgy from parametric
excitation is limited, the oscillator reaches a certain balance and paramctric roll is
stabilized with certain roll amplitude.

There are other important consequences of the nonlinearity of the GZ curve.
Since the instantancous GAM changes, paramctric roll may become possible for the
frequencics wherc it is not considercd possiblc, if judged only using the initial GM. This
requircs, however, fairly large amplitude rolling, or very significant nonlinearity in the
initial part of the GZ curve.

2.3 Level 1 Vulnerability Criteria

In order to give risc to parametric roll, the paramctric exeitation (change of
stability in waves) must satisfy two conditions: its frequency (the encountcr frequency)
must be within the range and its magnitude must be above the threshold (resulting from
damping). The Mathieu equation (and Incc-Strutt diagram) is the simplest mathematical
model that can be used to check if thesc conditions are satisticd. ABS Susceptibility
Criteria are based on this approach (ABS 2004, Shin et al, 2004).

K. Spyrou proposed a morc advanced and practical version of the criteria basced
on the Mathieu equation (Spyrou. 2005). This idea was further used as a background for
SLF 53/3/7 and is explaincd further below.

2.3.1 Frequency Condition

Boundaries of the 17 instability zone of at Ince-Strutt diagram have a known
approximation:

(2.16)

b [

1
Pmm=zi

Here p and g arc parameters of the Mathieu equation (2.11) given by formula (2.12).
The encounter frequency is related with speed and hecading as:

2
w

£

o, =0—-—7Vcosf (2.17)

Herc F is the forward speed in nv/s, £ 1s heading angle relative waves (0 is following
waves), g is acceleration of gravity, and @ is true frequency of a wave.
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Assuming ¢ = 1 (this is a conservative assumption as most container ships have
q = (.25~0.4). Spyrou (2005) formulated the criterion in terms of specd range (in knots):

. - = - 2.18
05144\ Vo T, Y0514\ Von T, e (i)

Hcre L is length of a ship, and 7y is the natural period of roll.

This criterion was used in SLF 53/3/7 as a preliminary condition. 1f the scrvice
speed of a ship does not fall into the range defined by equations (2.18). it is not
susceptible to parametric roll and a further vulncrability check is unnecessary. This
preliminary condition makes the criteria easier to use, as the calculation of stability in
wavcs is not required if the ship speed is outside of the rangc (2.18).

2.3.2 Magnitude of Stability Change

The second condition requires the results of the calculation of the stability in
wavces, as it 1s based on the magnitude of parametric excitation. The idea is to sce how
much the roll motions could grow, after a certain number of “dangerous™ waves are
encountered.

Consider the roll equation (2.5). re-writing it as:
0+ 2660+ o> {1+ hcos(w_1))-¢=0 (2.19)

Here £ is another form of non-dimensional magnitude of parametric cxcitation:

As was mentioned earlier, the equation (2.19) does not have a solution that can
be exactly expressed as an elementary function. Spyrou (2005) uscd the approximate
solution according to Hayashi (1985):

gty =e (( 1€ sin(e,t —£)+ Coe* sin{w, 1 + 5')) (2.21)

Here ', and (> are arbitrary constants determined through initial conditions, and & is a
parameter controlling the growth or decay of oscillations. It is cxpressed as:
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t<=z\/a'h'—4(u'—1)2 (
Here a is another variable cxpressing frequency ratio:
o,
a=4—" (2.23)

Obviously ¢ =1 when o, = 2 0, and this is exactly the middle of the first instability
zone of the Ince-Strutt diagram (the occurrence of principal parametric resonance).

The phasc € is determined from the following expression:

cos(2£)=M _—

Tce<0 (2.24)
- h 2

For the sake of being conscrvative, the encounter frequency of a “dangerous™
wave is considercd to correspond cxactly to the principal parametric resonance:

/
a=1; K=——’l £=—E : (2.25)

4 4

Assuming zero for the initial roll ratc and the cosinc function for parametric excitation.
the arbitrary constants were found cqual to

A

€ ==Cy =700 3 by =0 (2.26)

1

Substitution of (2.25) and (2.26) into (2.21) yiclds:

2 ; 025hm.t s ‘ Wshart o
(1) =—‘2r=¢.,e (e - sm[wmr : %J—e" = sinf .1 —}D 227)

This formula allows for the calculation of the amplification factor, /. after »

oscillations (note that in the considered case, the response has a frequency., o, and there
were 2n “dangerous” waves):

f =i¢( 2“”} (2.28)
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Note that aftcr one or two cycles of oscillation, the term with the negative
exponent in the equation (2.27) will become small, compared to the cxponentially
growing term, and could be negleeted. Then the substitution (2.27) into (2.28) yiclds:

.
I =_£cxp[m_rh_ “Om)sin(Znn—gJ (2.29)

q
4 W,

Expressing A from cquation (2.29) leads to

Inf+In2 45
pag Ll IR (2.30)
nn L

m

Given a factor of amplification and a number of oscillations, the following
criterion is deduccd:

221nf+ln2+ 48
nn ©

m

h (2.31)

Substitution of the constants and moving the damping to the left hand side of the
incquality produces the criterion in its final form (Spyrou 2005):

h-—i?— = 0.693+1In f 232)
o, 1.571n

Formula (2.6) allows rewriting the criterion in (2.31) in terms of GM in waves:

GM, 22lnf+ln2+4_8
GM nn ©,,

(2.33)

1f stability changes in waves can be assumed symmetric, the calm water values for
G M and roll frequeney can be used instead of the mean values in waves:

GM
2 >21nf+1n2+ifi_

GM, n o, (2.34)

To complcte this consideration, the paramcters in (2.34) have to be chosen. If no
other data is available, ABS (2004) recommends, as a conservative estimatc:
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L2 2003 535
o, (2.35)

The number of ¢yeles and the factor of amplification are obviously related. A
larger amplification of initial roll may be expected for more cyeles. These parameters are
very important for the tuning of the criterion and need to be addressed during the later
stage of development. As a preliminary guess. /= 5 while » = 4 leads to:

GM
2 >0.49 236
GM (2.36)

This is very close to the standard proposed in Annex 2 of SLF 53/INF.10 — the
value of 0.51 was used therc for a standard, while the general form of a criterion is
similar to (2.36).

2.3.3 Parameters of the Wave

To carry out the calculation of stability in waves, the parameters of the wave need
to be assigned. Assuming the wave length is equal to the ship’s length scems to be
logical, as this maximizes the stability changes. ABS susceptibility criteria are based on
this assumption. The height of the wave is defined by a table depending on length (ABS.
2004).

K. Spyrou proposed to relate the wave height with wave length by using the
principle of equal probability in order to establish a fair basis for the safety assessment of
ships of all sizes. This entails a steepncss decrease for a longer ship, thus taking carc of
the fact that a high value of wave steepness is less probable to occur for long waves. It is
noteworthy that a similar approach to steepness was implicitly usced in the formulation of
the weather criterion.

Parametric roll is excited by a eonsecutive action of a series of waves. Therefore,
it is logical to evaluate probability for the encounter of a group rather than for a single
wave. This can be done using wave group representations described in Themelis and
Spyrou, (2007; 2008) and Themelis (2008).

Sequential wave heights are presented with a Markov chain. This mcans that the
wave height is assumed to be dependent only on the height of the previous wave, but is
independent of the waves prior to the previous wave. This assumption seems to be quite
logical, sincc the wave envelope (a curve that contains all the heights) has an
autocorrelation function with relatively fast decay: so the correlation is practically zero
after two wave periods.

Because a joint distribution of wave heights and wave lengths is known, this
approach allows for the calculation of the probability of encountering a number of waves
of a given length (actually the length within a given range) and height. K. Spyrou
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caleulated how the steepness depcnds on wave length, keeping the probability of
encounter of a group of four waves constant (P = 6.3 x 10°). The caleulations were
carried out for a significant wave height of 5 m and modal period of 12 s. There were
two series of calculations using different ranges for wave length. The results of the
caleulations are shown in Figure 2.15.

This analysis, although preliminary, still allows eapturing of the dependence of
steepness on length, and avoiding penalizing large ships.

Based on these ealeulations. a sample formula for wave height is proposed:

0.051 it 1<100
H = %(0.2 ~0.0005L) if 100< L <300 (2.37)
bS]
0.016671 L =300

Results of the applieation of these eriteria to the population of the sample ships
are shown in Table 1. Further details of the sample ships are given in Seetion 7.

Table 1 Sample Resulls for Vulnerability Crileria Level | Based on Parametrie Excitation

Equation (2.18): | Stability | Stability
boundaries for variatio | variation | Vulner-
Ship | dangerous speeds | n check | equation | ability
GM  |Vs, kts Ve Vi, | needed? | (2.34) detected?
Fishing Vessel 2 0.73 | 15.00 1.74 -5.24 Yes 0.09 No
Fishing Vessel 1 (ITTC A2) | 1.70 | 18.00 -6.08 -20.98 Yes 0.16 No
General Cargo 1{S60) 0.27 | 18.00 14.40 529 Yes 1.03 Yes
RoPax 1.79 | 18.00 -2.65 -25.41 Yes 0.82 Yes
Bulk Carrier 2 0.56 | 15.00 | 12.96 1.02 Yes 0.40 No
Naval Combatant 2
(ONRTH) 3.03 { 30.00 | -17.99 -52.94 Yes 0.26 No
Naval Combatant 1
(ONRFL) 1.04 { 30.00 1.73 -18.79 Yes 0.58 Yes
General Cargo 2 (C4) 0.90 | 16.00 7.85 -8.99 Yes 0.57 Yes
Containership S (C11) 2.00 | 25.00 7.45 -15.89 Yes 0.77 Yes
| LNG Carrier 3.42 | 18.00 | -1.16 | -31.11 Yes 0.18 No
Bulk Carrier 3461 15.00 2.90 -24.48 Yes 0.09 No
Passenger Ship 3.75 | 25.00| -16.75 | -58.59 Yes 0.57 Yes
Containership 4 1.15 | 25.00 8.43 -15.33 Yes 0.75 Yes
Tanker 995 14.00 | -16.36 -60.16 No 0.03 No
Containership 1 1.27 | 2500 | 1622 -3.85 Yes 1.42 Yes |
Containership 3 1.85 | 25.00 10.31 -14.45 Yes 0.58 Yes
Containership 2 .79 | 25.00] 17.05 -4.95 Yes 0.90 Yes

The eheek on dangerous ship speeds shows the need for the stability variation
eheek for all the sample vessels, exeept for the tanker. The stability variation eheck
indicates possible vulnerability for all eontainerships, RoPax, Naval Combatant 1,
passenger ship and the general eargo ship 1. These results are less conservative
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compared with the geometry-based criterion (Peters, ef af.. 2010), which is expected, as
these criteria are more complex.
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Figure 2.15 Dependence of Wave Steepness on Length, Based on Equal Probabilily of Enconnlering a
Group of Four Waves

2.4 Level 2 Vulnerability Criteria

2.4.1 Mathematical Model of Wave Environment

Excessive conservatism may be a problem for the second level of the vulnerability
criteria; it may incur unnecessary cost, bccause a ship not susceptible to paramctric roll
will be subjected to expensive direct analysis proeedures. In order to avoid exeessive
conservatism, without compromising safety, mathematical models of higher fidelity are
used for the second level vulnerability check.

Therefore, consideration of the vulnerability of a ship to parametric roll in
irregular waves is prefcrable, not only because it is consistent with the probabilistic
approach discussed above, but also because the use of regular waves may be too
conservative. Regular waves are essentially a wave group of infinite length; thercfore,
the time to develop large amplitude is also infinite (SLF 48/4/12). In a real scaway,
parametric roll development is the responsc to a particular wave group, of finite duration,
which contains waves capable of generating parametric resonance. Not all wave groups
possess such characteristics, and this is the rcason why paramctric roll can start and stop.

The fidelity of the mathematical model used for the sccond level vulnerability
critcria can be improved by considering the response to a group of large waves with some
“typical” characteristics. The length of this wave group can be found from the sea state
conditions (Themelis and Spyrou, 2007; 2008, Themelis 2008). However, at this stage of
study, it is suggested 10 keep this as a tunablc parameter. Further work to justify its
choice will be discussed in a future study. At this stage. the length of a wave group is
proposed to be 5~9 waves. The numerical example discussed below used 7 waves.

The “typical” wave group, shown in Figure 2.16, is assumed to consist of a

number of waves of the samc length and period which corresponds to the spectral mcan
period. Justification of this assumption is considered later. in the next subsection:
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L) = A(t)cos(w,r) (2.38)

where o) is the mean frequency, A(t) is an amplitude of the group; it is defined with a
sine funetion envelope:

A=A, +05(4 -4 )sin(o,r-0.51) (2.39)

max

Amin and Ay, are the minimum and maximum amplitude of the group, respectively. @y is
an envelope frequency defined as:

w, =

SIS

(2.40)

T is a time interval for a group to pass a fixed point, and depends on number of waves in
a group and the mean period;

T; = NT, (2.41)

where Ng is assumed number of waves in a group. The amplitude of the group is
considered as a function of time only; its spatial change is not modcled.

For simplicity, consideration of the wave dircetion 1s limited to only head or
following seas. This is expected to be appropriate, as parametric roll will likely be most
severe in these conditions. Encounter frequency is expressed as:

o, =0, +k,kV, (2.42)

where Vs is forward speed, &; is the wave number corresponding to the mean period, 77,
and k4, is a wave direction coefficient; it equals 1 for head seas and -1 for following seas.
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0 10 80
Figure 2.16 Time hlstory of a wave group passing fixed point in space, Sea State 7
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The time while the group passes a point at the midship section is expressed as:

‘N'li )' |

T:’};' = ’
c+k,Vs

(2.43)

where A4; is the wave length corresponding to the mean period, and ¢ is the wave celerity.
The relation between period, length, and wave celerity is:

7=— (2.44)

The deep-water dispersion relation 1s used to relate the mean frequency to the wave
length (through the wave number):
2n o,

Ay =—; k,=— (2.45)
k, £

The duration of time that the wave group passes the midship section aftects the formula
for the amplitude envelope:

A
A; (’) - Amm + O'S(Amaw - Amln )Sin(m 11"{ - O'ST[): @ o = ;"_T[ (246)

This leads to a re-formulation of the wave group description in terms of the frequency of
encounter:

(= A(,(t)cos((oet) (2.47)

2.4.2 Parameters of a Wave Group

All the waves in the group are assumed to have the same frequency which equal
to the mean frequency of the spectrum. The justifieation of this assumption eomes from
the envelope theory, which was used by Longuett-Higgins to derive the joint distribution
of wave heights and periods. The theory of envelope was originally developed by Rice
(1944; 1945) and considered a stochastic process (in this case, wave elevations) in the
form:

(1) = A(f)cos{d(n)) (2.48)



Herc one stochastic process is presented as a function of two other stochastic processcs:
the wave clevation envelope A(f) and the phasc ®(r). If the spectrum of process, (1), is
narrow banded (or at lcast has an articulated peak), the processes of the envelope and the
phasc arc slowly changing in comparison with process £(f). The process is convenicntly
presented as:

Z(r) = A(tycosd(ty + AD(1)) (2.49)
The derivative of the phase is related to frequency:
d(r) = o(n))| (2.50)

The frequency is a positive value, by the definition. The phase shift process, Ad(r). is
“responsible™ for the “randomness” of the process £(f). In particular, this helps to keep its
autocorrelation function of the presentation (3.50) equal to the autocorrclation of the
original process (Autocorrelation function of a stochastic process is a measurc of its
“memory”’; it shows the correlation of the value at present instant of time with the value
in the past).

The autocorrelation function of waves does not have to be modeled for
vulnerability criteria (it makes the mathematical modcl too complex). Thercfore, the term
AMd(t) can be neglected:

L(y= A(t)cos(m(t)l) (2.51)

One of the results of the cnvelope theory (Rice 1944; 1945) is the joint
distribution of the envclope and the derivatives of the phases:

2 2 - 3y 2

M b _2 q)

flA )= —== exp("’i”'m’ ki (2.52)
o, 21t,/0)§—m|2 20, (0; —0y)

Here o is the standard dcviation of wave elevations, ©) is the mean frequency. and o is
the average width of a spcctrum:

o

©, = J.\-(m)mdm (2.53)
4]
1 [ .
Q== I s{()o do (2.54)
0'; )
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For the envelope presentation, the amplitude follows the Rayleigh distribution, and the
conditional probability density function (PDF) can be expressed as:

; 2
Lo S o 9-0)
f(®| 4)=- = exp — A" —5———=- | (2.55)
S g, \Pn,/u)z—mI 20, (05 —0)
The mean valuc and the variance are expressed as:
m= J‘.f‘(d) | AYDdD = o,
’ 2.56
G‘%((n% —mlz) { )

yb|A)= ]_/(cb'A)(d)—m(d)u))’-dd):*T

Then, it becomes not difticult to see that the conditional distribution of the derivative of
phase is, in fact, normal. Taking into account (2.50), the PDF for frequency can bc
expressed as:

f(o| A= f(b=-0| D+ f(D=w|A4) (2.57)

Fitgure 2.17 shows this PDF computed for three different amplitudes. The mean
value and variance of the frequency can be computed using this PDF:

m(m | A ) = Jj (o] Ao do
(2.58)
Vio| )= J,f(m! Ao —m(o| 4)’ do

I

[ PDI

T

0 02 04 06 08 I 2 14
Figure 2,17 Conditional Distribution of Frequency for Three Different Amplitudes




The dependence of conditional mean value and variance on amplitude is shown in
Figurc 2.18.
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Figure 2,18 Conditional Mean Value and Amplilude of Frequeney as a Funetion of Amplilude

Figurc 2.18 shows that, with increase of the amplitude, the mean value of the
frequency quickly approaches the spectral mean frequency, ©;, whilc variance is reduced
dramatically. This means that once to the wave becomes larger, their frequency is very
likely to be closc to the mean frequency, with little deviation. As the wave group is
mcant to consist of large waves, this justifies the choice of the frequency for the wave
group.

Three more parameters remain to be defined: the number of waves in a group, and
the initial and maximum amplitudes. A robust choice of these parameters can be made
based on wave statistics, either measured or simulated. For the purposes of testing the
proposed criteria, the following values of these parameters were chosen:

N,=7: A, =05Hy; A, =154, (2.59)

Herc Hy is significant wave height.

2.4.3 Roll Response of a Group

As was mentioned previously, the level two vulnerability criteria should be based
on a higher fidelity mathematical model, in order to prevent excessive conscrvatism.
Consideration of irregular waves was one step towards this objective. Another step is to
better account for the instantaneous attitude of a ship on the wave, while computing
stability in waves. As it was demonstrated in Shin, ef al, (2004), neglecting hcave and
pitch increases the magnitude of instantaneous stability variations in waves.

The attitude of a ship is calculated based on the heave and pitch response to a
wave group:
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(M +4,,)C; + Bpl o + FL(5;.0.0)=0

o (2.60)
(I, + A,)0+ B0+ M, (5,.0.0) =0

where A is mass of the ship. 7y is mass moment of inertia relative to the transversal axcs,
As3 and Ass are heave added mass and pitch moment of incrtia (assumed to be equal to the
corresponding mass and moment of inertia), respectively: and B3; and Bss are damping
cocfficients for heave and pitch. Functions £ and M are the difference between Froude-
Krylov and hydrostatic forces and moments, respectively, at the instant of time. /. These
values ar¢ expressed as follows:

051
FG;.0.0) = pg{Vn - [, z(;f,,O,t))dx) (2.61)
~0.51
0.5/
M, (.00 =pg(V, LCB, - IMQ(x,z(C_,“..O.t))dx] (2.62)
0.5/

where p is mass density of water, ¥j volumetric displacement in calm water, LCBy is the
longitudinal position of center of buoyancy in calm water. Functions €2 and My, calculate
an area and a static moment rclative to the y-axis of a station located at a longitudinal
position along the hull, x. The second argument of this function shows the submergence
of this position along the hull, as expressed by the function of instantaneous watcerline
2(£¢.0.1), see Figure 2.19

b o(C:.0.0)

|

Figure 2.19 Sample Instantancons Waterlines Evalvated from Heave and Pitch Response ot a Group

Once the Froude-Krylov terms are defined. a system of differential equations
(2.60) can be integrated with a standard Runge-Kutta solver. Initial conditions are chosen
in order to avoid unrcalistically large initial transients. To find such initial conditions, let
the system (2.60) begin with regular waves of the same frcquency, but with the initial
group amplitude. Steady state conditions for heave and pitch, corresponding to the initial
phase of the group. can be used to calculate the heave and pitch response on the group
(see Figure 2.20).

Each point of the time historics of heave and pitch, shown in Figure 2.20,
correspond to a waterline. three of which are shown in Figure 2.21. These waterlines
allow for the evaluation of the GA response to the wave group (shown in Figure 2.22).




Nonlinearity of the instantaneous GZ curve is one additional factor that may be
taken into account, in order to avoid excessive conservatism by improving fidelity of the
mathematical model. However, before using a fully nonlinear model. it makes sense to
evaluate the roll response using a linear model. This will also help to sce if the frequency

conditions are chosen correetly. Also comparing the linear and nonlinear response
enables examination of the influence of nonlinearity.
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Figure 2.20 Heave and Piteh Response on a Group

Figure 2.21 Sample Waterlines Evaluated from Piteh and Heave Time History
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Figure 2.22 GM Response on “Typical” Wave Group, with the GM Value in Calm Water Shown in
Blue

0

The GM response to a “typical” wave group first should be approximated using a
cosine funection with time-dependent amplitude (see Figure 2.23):
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(rM ,+GM  (t)eos(o f + )

2.63
/1(80) GM ( )
where @, is the encounter frequency.

o, =0, +kV,; (2.64)

and where ¢y and k| are the wave frequeney and wave number corresponding to the mean
spectral period. Vs is ship forward speed, whieh is ehosen to satisty the frequency
condition for principal parametric resonance. while keeping the value within the
achievable range for the given vesscl, in the considered sca state.

IML¢QMJM

‘o 1(! 2

time, s
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Figure 2.23 Approximation of GM Response on “Typieal™ Wave Group with Cosine Funetion
Roll response is evaluated by the numerical solution of the roll equation with
stiffness (2.63) and assumed roll damping. The initial eonditions for the numcrical

solution of roll motion can be choscn as 5-10 degrees for the initial roll angle and zero
rol] rate.

$+28,0+0,/,(9.0)=0 (2.65)

Equation (2.65) is cssentially the Mathieu cquation (see Equation (2.11)). If the
amplification of roll oseillations is observed, then parametric exeitation 1s large enough,
taking into aeeount speed limitations. The largest absolute value of the roll angle
observed during the wave group pass can be used as a criterion:

CrL=max{|¢|) for [f=/, (2.66)

34




The next step is taking into aecount the nonlinearity of the GZ eurve. Due to
significant nonlinearity of the GZ curve, the development of parametrie resonance may
be reversed, as the change in instantaneous GM with roll angle may take the system out
of the Mathieu instability region (Spyrou 2004).

To model this nonlinearity, the GGZ eurve in waves ean be evaluated directly using
instantancous draft and trim available from pitch and heave caleulations. There are
several software packages available for this type of caleulations. Alternatively the
following approximation may be used in lieu of the actual instantaneous GZ curve (other
approximations can be formulated too):

. (Mf__l .
6z, 4.0 =D 67 ) (2.67)
GM,

Here the index “0” refers to calm water conditions. Equation (2.67) can be used in the
roll equation with nonlinear stiffness:

_GZ,y($.0)
Su($.0)= e (2.68)
6 +28,0+00f,(4.1)=0 (2.69)

Equation (2.69) is a variation of Hill's equation. However, it may be necessary to
extend (2.68) up to 180 degrees, to avoid numerical issues while solving equation (2.69),
see Figure 2.24.

Figure 2.24 GZ Curve Modeled for Response to a “Typical” Wave Group

Based on the solution of (2.69) shown in Figure 2.25, a second eriterion, CrN, is
formulated

CrN =max{|¢|) for [f=/, (2.70)

Due to the nonlinearity of the time-dependent stiftness, it is not known in advanee
what encounter frequency range may lead to parametric resonance. This implies that
ealeulation has to be repeated for several speeds.

89




40
Roll, deg

20

=20

Time, s
0 10 20 30 40 50 60 70 80
Figure 2.25 Nonlinear Roll Response to a “Typieal” Wave Group
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2.4.4 Results of Sample Calculations

Results are shown for the two criteria (Crl and CrN) for the sample ships (see
Figure 2.26). The values used for the evaluation for each ship are given in Table 2. For
the ships considered, a common damping ratio was chosen, typieal for thcse types of
ships. For the two naval combatants. which typically have larger bilge kecls, a larger
damping ratio was specified. The GM econdition used was a typical operational loading
condition for each of the sample ships, GM,p. Sea States 5-8 were evaluated, but only the
lowest sea state where parametric roll was obscrved and the given spced condition to
satisty the frequency ratio conditions are presented.

Modern containerships, particularly the C11-class containership, are known for
their vulnerability to paramctric roll (c.g. France, et al., 2003). The proposcd criteria
shows large roll angles for all five containerships, as well as the notional RoPax vesscl
and the passcnger ship, encountcring representative wave groups in Sea States 6, 7, and 8.
As expeeted, Series 60, which is representative of a conventional ship type. the tanker,
and bulk carriers did not show any vulnerability for the considered loading and
operational conditions.

Both ONR Topside configurations (flared and tumblehome) have rclatively large
bilge keels. The damping ratio used was meant to model the fully appended hulls. While
the ONR Tumblehome Topside did not show any parametric roll for the analyzed loading
condition, parametric roll was predicted for ONR Flared Topsidc, using the linear
formulation. However, parametric roll was not observed from earlier experimental and
numerical investigations (based on nonlinear formulations) for these hull forms with
bilge keels (e.g. Bassler, 2008; Olivieri, er al., 2008; Hashimoto & Matsuda, 2009),
including for the flared topside econfiguration with roll damping coefficicnts
corresponding to the fully appended hull. Furthermore, when the instantancous GZ curve
is used instcad of the approximation, parametric roll was not indicated, which
corresponded to previous findings.

The indication of parametrie roll is consistent with the carlier findings of Peters,
et al. (2010) for a smaller population of sample ships. However, the linear eriterion also
provides large values for the two fishing vessels, in addition to Naval Combatant 1. The
case with two fishing vessels deserves more attention. as these ships were found not to be
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susceptible to parametric roll by the level 1 vulnerability criteria based on magnitude of
stability variations (see¢ Table 1).

The reason for this inconsistency becomes clear when plotting A response from
the wave group. Figure 2.27 shows GM response on the “typical” wave group for a
fishing vessel calculated for Sea State 6. As can be seen from this figure, the
approximation is not applicable, and as a result the linear criterion (2.66) cannot be used.
At the same time, the nonlinear criterion (2.70) yields results that are consistent with the
level 1 criteria. based on magnitude of stability changes.

The reason for this inconsistency is use of the linear approximation beyond the
applicability of a lincar model. The level 1 criterion uses a wave with the same length
that the ship length, while the wave height is calculated from a prescribed steepness. For
the Fishing Vessel 2, this means that the wave length was 22 m, whilc the wave height
was about 1.1 m. A linear model may be valid in these conditions. The level 2 criterion
used a “typical™ group for Sea State 6. The wave length was 143 m, and the wave height
varied from 5 to 7.5 m. Figure 2.27 demonstrates that the linear approximation is elearly
not appropriate of a stretch for these conditions.

The nonlinear model nevertheless yielded reasonable results, stating the absence
of parametric roll in these conditions. To verify this conclusion, Large Amplitude
Motion Program (LAMP) simulations werc carried out for a regular wave of 143 m long.
with wave height of S m. The Fishing Vessel 1 was made to sail in head scas with a
forward speed of 10 knots. The initial roll angle was 10 degrces. The results are shown
in Figure 2.28. As it could be expected, after a short initial transient, the ship is simply
countering the waves and roll motions are simply decaying.

The nonlinear criterion., given in (2.70). provides correct cvaluation of the
outcome: no parametric roll.

Another case which requires more detailed consideration is for Naval
Combatant 1. The linear critcrion indicated parametric roll. In this casc, the linear result
is consistent between the levels 1 and 2. However, this ship is not known for parametric
roll, and . AMP simulations did not indicate parametric roll (see Figure 2.29).

These simulations were carried out for conditions where the largest wave (height
7.5 m) in a “typical” wave group corrcsponded to Sea State 6 (length 143 m, wave height
from 5 to 7.5 m). As can be clearly seen from Figure 2.29, pitch and heave motions are
not small, while the roll motions decays. At the same time, the application of the GZ
curve approximation (2.67). based on the GAM response to a “typical” wave group, leads
to parametric roll (see Figure 2.30). Use of the actual instantaneous GZ curve in waves
(calculated for conditions where the largest wave in the group had a height of 7.5 m)
showed correctly no parametric roll (see Figure 2.31).

This example demonstrates that use of the actual GZ curve in waves is preferable,
as the approximation (2.67) seems to be too conservative.

In conclusion, the nonlinear criterion provides a clearer separation between the
sample ships with increased vulnerability and those which are not known to be vulnerable
{Figure 2.32).
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Figure 2.26 Calculation Results for the Two Level 2 Vulnerability Criteria for Parametric Roll for
the Sample Ships, Linear and Nonlinear Criteria

Table 2 Caleulation Results for the Two Level 2 Vulnerability Criteria for Parametric Roll for the

. SampleShips L
GMgp

i Type S8 (m) Roll Damping Speed (kts) CrL CrN
Containership | 7 1.118 0.05 10 25 25
Containership 3 8 1.644 0.05 1 25 25
Passenger Ship 7 3.695 005 | 20 =28 | 25
Containership5(C11y | 7 | 1905 0.05 | Oooloo8 | 25 | 25
Containership 2 7 1.84 0.05 2 25 25
RoPax 6 1.773 0.05 25 25 25

| Containership 4 [ 7] 1064 [ 00s | 10 | 25 | 25 |
General Cargo 2 (C4) 6 1.099 0.05 | 5144 10.16 14.9
Fishing Vessel | (ITTC A2} 6 1.69 005 | 10 25 10
Naval Combatant | (ONR FL) 6 1.028 0.15 15 25 10
Fishing Vessel 2 6 | 0.7271 0.05 | 10 1 25 | 10 |

| Bulk Carrier 7] 9405 [ 005 | o [ 1w [ w0 |
General Cargo 1 6 | 0.2449 0.05 9.261 10 10
Naval Combatant 2 (ONRTH) | 6 3.013 0.15 25 10 10
Tanker i 9.763 0.05 10 10 10

LEUIEEatier 2 6 | 05293 | 005 | 6904 10 10
LNG Carrier B 6 3.398 0.05 1 1799 10 10

38




time. s

'l
“0 5 10 15 20 25 3 35 40 45 50

Figure 2.27 Approximation of GM Response on “Typieal” Wave Group for Fishing Vessel 2, in Sea
State 6.
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Figure 2,28 Results of LAMP Simulation of Fishing Vessel ]

The level 2 eriteria were independently implemented in Germany (Annex 9 of
SLF 53/INF.10) and in Sweden (SLF 33/INF.8 and Annex 10 SLF 53/INF.10).
Caleulations presented in Annex 9 (SLF 53/INF.10) were performed for 26 ships
ineluding eontainer earriers, bulk carriers, eruise vessels, tankers, multi-purpose vessels
{MPVs) and tugs. The eonsisteney between the level 1 (geometry—based formulation)
and level 2 was analyzed. An inconsistency was deteeted in the ease of the MPVs, as the
level 1 eriteria did not indieate vulnerability, while the level 2 did. However, based on
the available information, a suggested hypothesis for this difference 1s not currently
possible and additional analysis needs to be performed.
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Figure 2.29 Results of LAMP Simulation for Naval Comhatant |
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Figure 2.31 Roll Response to 1he Largest Wave in 1he Group— Acinal Instanlancous GZ Curve in
Waves

Documents SLF 53/INF.8 and Annex 10 of SLF 53/INF.10 reported calculations
madc for 25 ships including container carriers, bulk carriers, tankers, Ro-Ro ships and
military.  Comparisons were also performed with the ABS severity criteria. No
inconsistency has bcen reported. However, it was noted that thc modulation of wave
amplitude in a group docs not change the conclusion on vulnerability.
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Figure 2.32 Calculation Results for the Two Level 2 Vulnerability Criteria for Parametrie Roll for
lhe Sample Ships. Using the Nonlinear Criterion

2.5 Summary

This scction dcscribes the development of vulncrability critcria for parametric
roll. The subsection 2.1 provides some general background information on the physics of
the parametric roll phenomenon. It is shown how parametric roll develops and how it is
related to stability variations in waves. The influence of speed and wave direction is also
considered.

Subsection 2.2 describes the basic mathematical model used for deteeting
susceptibility to parametric roll. It is a linear differential equation with a periodic
cocfficient, also known as the Mathicu cquation. This equation may have a growing
solution, corresponding to the inception of parametrie roll. The influence of damping
leads to the appearance of a threshold for parametric excitation (stability variation in
waves); below this threshold. parametric roll is impossible. The nonlinearity of the GZ
curve leads to stabilization of parametric roll at a certain amplitude.

Subsection 2.3 describes level 1 vulnerability criteria. The proposal criteria
consider two diffcrent conditions. The first condition examines if a ship is capable of
achieving speeds that provide dangerous frequencies of encounter, while the sceond
condition examines if the magnitude of stability change may result in a given increasc in
roll angle during a certain number of cycles.

Subsection 2.4 describes level 2 vulnerability criteria. The mathematical model
used is more sophisticated. in order to avoid possible excessive conservatism. The
method accounts for irregular waves, by limiting the numbcer of waves (a typical wave
group with propcrties of a sea state), the influence of heave and pitch (through attitude of
the wave), and the nonlinearity of the GZ curve.

Sample calculations were performed using 17 ships.
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3 Vulnerability Criteria to Pure Loss of Stability

This scction deseribes the development of vulnerability criteria for pure loss of
stability, including the physical background for this mode of stability failure, a review of
the basies of probability theory used for further development of vulnerability criteria, and
a derivation of this joint distribution, bascd on envelope theory. A proposal for level 1
vulnerability criterion is considered, bascd on the geomctric characteristics of the hull,
and two level 2 vulnerability criteria are also presented and tested. Sample calculations
were performed using 17 ships.

3.1 Physical Background

Change of stability in waves, as examined in subsection 2.1.1, is also the physical
basis for another mode of stability failure: pure loss of stability. The dynamics of pure
loss of stability are different from parametrie roll, but are also closcly related to the
severity and duration of waterplanc changes. A possible scenario for the development of
a stability failure caused by pure loss of stability is shown in Figure 3.1.

Typical changes of
stability caused by
relatively small waves

Ship is sailing in following waves, A large
wave is approaching from the slern

Large decrease of the
instantanecous GZ
curve, caused by the
crest of a large wave

The large wave is overtaking the ship. 1f the
lime of exposure 1o the cresl of the large wave
is long enough, the slability failure may occur

. Typical changes of
The large wave has passed 1he ship. The stability caused by

ship has regained ils stability relatively small waves

Figure 3.1 Possible Scenario for the Development of Pure Loss of Stability




A large wave is approaching from the stern. while the ship is sailing with
relatively high speed in following seas. 1f the celerity (speed) of the large wave is just
slightly above the ship speed, the time duration for the large wave to pass the ship may be
long. Once the crest of the large wave is near the midship section of the ship, its stability
may be significantly decreascd. Because the wave celerity is just slightly more than ship
speed, the condition of decreased stability may c¢xist long enough for the ship to develop
a large heel angle, or even capsize. Once the large wave has passed the ship, its stability
is regained and the ship will eventually return to the upright position, if she did not
already heel too far.

3.2 Mathematical Tools for Development of Criteria

3.2.1 Role of Probability

There are two factors determining the risk of stability failure caused by pure loss
of stability. The first one is how large the stability changes on the wave. 1f stability
changes are small because the hull is wall-sided (a pontoon barge is an extreme example),
then this mode of stability failure is impossible,

The second factor is the likelihood of encountering a large and steep wave, which
can cause a decrease of stability for a sufficiently long time so a large heel will develop.
There are several contributors to this likelihood:

o Length of the ship; for a large ship, a longer wave is needed to cause significant
changes of stability. The likelihood of encounter of the ship with a large and
steep wave 1s low.

e Length of the ship also has an influence on the time of exposure, as the longer
waves are faster (c.g., a wave with a length of 250 mcters has a celerity of 38
knots in deep water).

o Speed of the ship; this has an influence on the time of ¢cxposure, Large waves arc
usually faster than typical ship speed. Howevcr, faster ships may potentially have
longer durations of exposure.

s Spectral characteristics of the wave environment can increase or decreasc the
likclihood of encountering long and steep waves.

A brief review of these contributors makes it clear that the stability failure causcd
by pure loss of stability has a probabilistic nature. An attempt to develop criteria based
on deterministic background, say wave length equal to ship length, may lead to excessive
penalizing of large vessels and introduce excessive conservatism (Anncx 5 SLF
52/INF.2), which is not desirable,

Also, fundamentally, pure loss of stability is a single-wave cvent; once the large
wave has passed by the ship, its stability is regained. Therefore, the risk of pure loss of
stability for a particular ship can be completely determined by the probability of
encountering a large wave, which causes enough exposure time to permit a failure.
Therefore, mathematical tools to evaluate the probability of a large wave are needed.
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These tools should also be capable of determining the probabilistic characteristics of the
rclated exposure time.

Wave elevation is a thrce-dimensional stochastic process. It changes in time at a
given point. It changes in two spatial dimensions, for a given instant of time. So there
arc one temporal and two spatial dimensions to consider.  This threc-dimensional
stochastic process is a source of information for finding the probability of encountering a
wave of certain characteristics. While this may sound complicated, this problem is
considered to be solved with reasonable accuracy required for engineering practice
(Longuett-Higgins, 1957; 1976; 1984)

Prior to the use of these tools, a brief review of the basic probabilistic concepts
used for these models may be useful. This review comprises the remainder of the
contents of this subsection.

There arc three tvpes of mathematical objects relevant for the current
development of vulnerability criteria:

¢ Random event: an event that may or may not occur in a given sct of conditions
(example: tossing a coin results in “tails™)

o Random variable: a number that appecars as the result of a random event (a
numbcr given by throwing dice)

» Stochastic process: a set of random numbers depending on each other.

3.2.2 Random Events

Probabilistic independence/dependence is a very important concept. Two random
cvents 4 and B arc independent, if the probability that event A will happen does not affect
in any way the probability of event B. The probability that both cvents A4 and B will
occur simultancously is just the product of these probabilities, if the events are
indcpendent:

P(AN B)=P(A)P(B) (3.1

If random events A and B arc dependent, then the probability of occurrenee of A is
affccted by the probability of occurrence of event B. Mathematically, this is expressed
through the probability that event A will occur, if it is known for sure that the event B
happened. This probability is known as the conditional probability and is defined as:

P(ANB
P(A| B)=—(;(—;‘)—l (32)

Formula (3.2) allows for examination of the difference between independcent and
dependent cvents, in tcrms of the probability of their simultancous occurrence:

45




P(An B)= P(A)P(A| B) (3.3)

3.2.3 Random Variables

Random variables are characterized by probability distribution funetions, used in
two forms: eumulative distribution funetion (CDF) and probability density tunetion
(PDF). The former is defined as the probability that a random variable will not execed
the argument of the CDF:

F(x)=P(X <x) (3.4)

Per the definition that the probability is a number between zero and one. the limits
of the CDF are:

lim F{x)=0: limF(x)=1 (3.5)

X—p--a0

The probability that a random variable will take a value in the interval from a to b
is expressed through the CDF in a tollowing way:

Pla<x<b)=F(b)- F(a) (3.6)
The probability density function is defined as a derivative of the CDF:

dF(x)
dx

f(x)= (3.7)

As a result, the probability that a random variable will take a value in the interval
from a to b is expressed through the PDF in a following way:

Pla<x<b)= [f(x)dx (3.8)

a

As a eonsequence of (3.5). the area under the PDF must be unity — this is known
as a “normalization eondition™:

ff (x)dx =1 (3.9)

46




Besides the funetions of distribution, random variables are also characterized by
the moments of the distribution (or just, the moments). There are two types of moments:
initial and central. The initial moment of order »n 1is defined as:

= I.f‘(x)x"dx (3.10)

The most important initial moment is the mean value (a.k.a the mathematical
expectance, the average). It has an order n=1:

m, =, = J.f(x)xdx 3.11)
The central moment on the order 7 is defined as:
= j_f(x)(x—m,)"dx 3.12)

The most important eentral moment is the variance. It is the measure of variation
of the random number around the mean value. It is the central moment of the seecond
order n=2:

]f(r) x—m,) dx (3.13)

The variance has a dimension of squarc of the units of the random vanable.
Sometimes it is more convenient to operate with a characteristic of the same dimension.
Therefore, the standard deviation is defined as:

o, =V (3.14)

There are many distributions derived to describe behavior of difterent random
variable appearing as a result of different circumstances. However, one distribution is
more important than others, as it is a “limit ease™ in a certain sense. It is the normal, or
(aussian, distribution:

(3.15)

b
)= ﬁexr{— %}




Formally, th¢ normal distribution is derived as a distribution of a sum of an
infinitc number of random variables: each variable may have any distribution, but if their
eontribution is about the same, the sum of these variables have a normal distribution.
The practical importance of normal distribution is that if there arc many random factors
of the same level of influenee, the result will have a normal distribution. This is why
errors of the measurement usually are assumed to be normal. This statement is known as
the “Central Limit Theorem”.

Two independent random events produce two independent random numbers (e.g.
throwing two diee). The joint distribution of two variables is characterized by the CDF
and PDF that are funetions of two arguments. Howevcr, if two random variables are
independent, their joint distribution is just a product of the one-dimensional (marginal)
distributions):

S yy=f(x)f(y) (3.16)

Equation (3.16) is, in a sense, similar to thc cquation (3.1). If the random
variables x and y are dcpendent. their dependence is fully eharacterized with the
conditional distribution of x. if y took a certain value (say v = h):

_Sxy=b)

fix|y=b
e f(y=h)

(3.17)

Another characteristic of dependence is a correlation moment. 1t is detined as:

¥

M, = ] If(x. }')(x —m, Xy =y )dxdy (3.18)

x

It is convenient 10 use a non-dimensional expression of the corrclation moment,
namely the correlation coefficient

\ M

X

r, = J 'J;_ = (3.19)

o.C

L

The corrclation coefficient varies from -1 to 1. 1f it is zero, the variables x and y
arc not correlated. Strictly speaking. absence of eorrelation does not prove independence
in the general case. Only normally distributed variables are independent if they arc not
eorrelated. However, in most practieal cases, absenee of correlation is a strong indication
of independence.  The opposite is always correct, independent variables are not
correlated.
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If the correlation coefficient is elose to positive or negative unity, the eorrelation
is very strong. In ease of unity (positive or negative). there is a deterministie relation
between two random variables.

Two random variables may be related with a deterministie funetion, like a linear
funetion, square. and eventually any type of function:

y=0¢(x) (3.20)

Knowing what this funetion is allows determination of all the charaeteristies of
the random variable y, if similar charaeteristies are known for the random variable x. For
example. the mean value of y ean be found as:

m, = m(o(x))= olm, ) (3.21)

Other eharaeteristies, like varianee and distribution also ean be found.

3.2.4 Stochastic Processes

Finally, the stochastic proeess is a set of interdependent random variables. Wave
elevation at a point is a very good example of one-dimensional stochastie process. Here,
probabilistie dependence deseribes the fact that water is a heavy fluid, so its level eannot
change instantancously.

Similar to the random variable, the stochastic process is characterized by the
CDF, PDF. mean value, varianee and other moments of the distribution. However, in the
most general ease, these figures may be dependent on time. For example, signifieant
wave height (which is related to the varianee of wave elevation) changes with time when
the echange of wind speed and direetion leads to a ehange in waves.

If the probability distribution of a process does not ehange in time. sueh a proeess
is defined as a stationary. Naturally, mean value, varianee, and other moments are also
constant. A stationary proeess is a good model of wave elevations during a relatively
short time (<4 hours), while the change of waves normally may be considered
insignificant.

The autocorrelation funetion is the measure of dependenee within a proeess. It is
defined as a eorrelation moment caleulated between two values of the proeess. taken at
the time instant ¢, and time instant ¢;

R(1,.t,)= J’ SOt x ()X (1) = m, () Xx(t, ) = m(4,) Jdxed (3.22)

u,‘—-."
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The autocorrelation function shows how quickly dependence decays in time. The
current wave elevation at a point cannot really depend on what happened a half-hour ago,
as memory of the wave surface does not last that long. If the process is stationary, the
autocorrelation function only depends on the interval:

n

R(t)= _[ J‘f(x(t ), x(t + 1) Xx() —m, Xx(t + 1) —m, Jdxddx (3.23)

——

The autocorrelation function can also be calculated from the spectral density. s(o®):

R(1)= IS((O)COS((&)T)L](D (3.24)

0

This briet review of available probabilistic tools helps with formulating the steps
for the development of a probabilistic vulnerability criterion for the second lcvel.
Remaining considerations include:

Specify an appropriate distribution of wave lengths and wave heights;
e Formulate criteria for a regular wave;

e Consider these criteria as a deterministic function of random arguments wave
height and wave length;

e Use the distributions of wave length and wave height to find the mean valucs of
the criteria.

These steps allow consideration of specific features of the sea state, through the

distributions wave lengths and wave heights, while also maintaining the simplicity of the
regular wave approach.

3.3 Joint Distribution of Wave Number and Wave Heights

3.3.1 Envelope of Wave Elevations

This section is focused on the derivation of the joint distribution of wave lengths
and wave heights, as this is the key element of the model used for the wave environment.
This model is based on the work of Longuett-Higgins (1957; 1976: 1984).

Strictly speaking, the wave surface is a random field, or three-dimensional
stochastic process. However, for the development of probabilistic vulncrability criteria
for pure loss of stability, several significant simplifications can bc madc.

Because the objective 1s the determination of vulnerability, the model can be
limited to long-crested seas. Changes of stability in long-crested seas are expected to be
morc dramatic than in short-crested seas, as there is no angular spread of wavc energy.
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Because the objective is wave height and length only, ehanges of the wave profile, while
the wave passes the ship, ean be negleeted.

These two simplifications allow for eonsideration of only one dimension: the x-
coordinate. The stochastie process of wave elevation in space can be presented as:

2(x) =Yy cos(hx+6,) (3.25)
=]

Here, &, is set of wave numbers (spatial frequeneies) used for diseretization of the given
spectral density. ry; is amplitude of the i-th component and ¢; is the phase shift for the i
component. The wave numbers are related with frequencies through the deep-water
dispersion formula:

k= (3.26)

g

Here g is the gravity aceeleration.

To obtain joint distributions. following of Longuett-Higgins (1957: 1976 1984).
consider the envelope presentation of the wave along the x-axis:

z(x) = a(x)cos ((I)(x)) (3.27)

Here the proeess z(x) is presented through two other stochastic processes: amplitude, or
envelope, a(x), and phase ®M(x). Originally, the envelope presentation was developed for
a stationary normal process by Rice (1944; 1945), so it is fully applicable for wave
elevations. The envelope. a(x), is defined through a complimentary proeess, y(x), which
is the result of the Hilbert transformation of the proeess z(x):

N

ry, sin(k,x +¢,) = a(x) sin(®(x)) {3.28)

[}

y(x) = H{z(x)) =

1=l

The envelope is defined as:

a(x) =422 +* (3.29)

Obviously, the varianee of the eomplimentary proeess is identical to the variance
of wave elevations:

S




1 &,
=i, =;Zrﬂz, =) (3.30)

The dependency of two processes can be expressed through the cross-correlation
function (similar that autocorrelation function, but defined for two different stochastic
processcs taken at different points).

Cxm)= [ [0y Xa) = m )y, ) — m, () vz @51

Since both the processes z(x) and y(x) arc stationary, the cross corrclation function
depends only on the difference in x-coordinatcs:

G (Ax)= J 1_[ Fz(x) 3 (x + (AN z(x) - " X)'(x +AxX)—m, )d}‘d: (3.32)

The cross-correlation function (as well as autocorrelation function) can also be
expressed by averaging along the x-axis.

C(Ax)= E(z(x).p(x + Ax)) (3.33)

Here £(..) is an averaging operator along the axis x:
;&
E()= m(? nj(..)de (3.34)

Similarly. the autocorrelation function can be expressed as:
R(Ax)= E(z(x).2(x + AY)) (3.35)

Substitution in the presentation of (3.25) and (3.28) allows rc-writing both the
autocorrelation of the process z and cross- correlation of processes z and y as:

R(Av)= Zr,h cos{Ax) (3.36)
C(Ax)=— Zr,,,ﬁm A\‘ (3.37)
“ r=l




The stochastic processes z(x) and y(x) are not correlated if the x-coordinate is
fixed. since the phases werc shifted 90 degrees.

C(0)=0 (3.38)

Since both the processes x(f) and (1) are normal, they are also independent at the
fixed point. However, the values of the processes may be correlated, if they are taken at
different points on the x-axis

Similar to autocorrclation function, the cross-correlation function is rclated with
spectrum through the sine Fourier transform in time and in space

Ciw) = I.s'((:))sin(mt)tim (3.39)

o

C(Ax) = J‘S(k)sin(kAr)dk (3.40)

0

Here $(k) is spatial spectral density

3.3.2 Joint Distribution of Envelope and Phase

Consider the probability that the envelope takes a particular value. Taking into
account {3.29) , it can be expressed in a form of the following inequality

as\z*+y’ <a+da (3.41)

The probability of satisfving the inequality (3.41) is directly related with the PDF of the
cnvelope. fla):

P(a < \/:2 +)' <a+ da): f(a)da (3.42)

The probability (3.42) can be evaluated if the joint distribution of z and y is known:

fla)da = P(a <{z'+y’ <a+ da)= S (2. y)dzdy (3.43)

asy 224y <asda
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Here f(z.y) is a joint distribution of the original process z and its complimentary process
y. Since both these processes have normal distribution: their joint distribution is also

normal:
(:" 2e_zy }'ﬂ\
I—,—'—“f'— (3.44)

Sz

— 1 . . 1 <
_Zn\/l’__l",(l—(-:)mp - N7 Jov, V)

Here ¢, is a corrclation coefficient.

C_(0)
Co = I T =

= )

0 (3.45)

Taking also into account that the varianccs of the original process z and its
complimentary process y arc identical (3.30):

. ! 122+
_f(:.y)=,)nl,exp(—:( :) PJ (3.46)

An substitution of the distribution (3.46) into Equation (3.43) togcther with a transition to
polar coordinates yields:

fla)da = ﬂf(?:.}")d:d_l‘ =

usyz 37 carde

1 TEET .
R e
a =.‘f:: +_}': X =acos((l))! (3.47

Tlo= arclan(%} y=a Sin(‘D)‘ B

a+da 2n Ty
_-ﬁ ‘;[ Jacxp[—%(?—,”dﬂ)da

Marginal distribution is defined as:

f@= [fao)m (3.48)
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Then, consider f{a) as a marginal distribution of the joint distribution f{a,®).

flada= [ [f(a.®)dbdda (3:49)

1] 0

This joint distribution f{a,®), then is expressed as:

_ 1(a’
fla, D)= sz exp(_g(‘:’ B (3.50)

The right-hand side does not eontain the phase variable @. This means that the variables
a and @ are independent. The PDF of @ can be found by the integration of (3.50) by &
from 0 to 27.

» 2 a 1{a*
Sfla)= J'f("'q)) d(l)=Fexp[-5(?]] (3.51)

This distribution is known as the Rayleigh distribution.

The distribution of the phase ean be found from the formula (3.50) using the
established faet of independence of envelope and phase:

1 fla,®) 1
)= =—; 0%
) Gl 0<®<2n (3.52)

The phase in the envelope presentation follows a uniform distribution from 0 to 27, This
eoneludes eonsideration of PDFs of the envelope and the phase.

3.3.3 Joint Distribution of Envelope and Phase in Two Points

Consider the four-dimensional distribution of values z and y of x and of x+Ax. It
can be presented as a system of four random variables:

fad
h
tad
—

U =(2(x) . z(x + Ax), p(x) . p(x + Ax)) G
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Since the processes z and y are normal. all four variables have a normal
distribution. Then the distribution of the vector U is completely defined by a covariance
matrix.

The variables z(x) and )(z) are not correlated, and the variables z(x+Ax) and
p(x+Ax) are not either. However, the z(x) and y{x+Ax) are correlated with the correlation
coeflicient

% M(z(x). WX +Ax))= %( (Ax) = Z"“ sin{Ax) = ¢(Ax) (3.54)

=]

A similar formula can be written for another “cross-pair™ of the random variables
2(x+Ax) and y(x).

%M (z(x + Av). y(x)) = -I'-,(‘(-m-) = % 3 12 sin(= Ax)= —c(ax) (3.55)

Note that the correlation between z(x) and z(x+Ax) is expressed through the
autocorrelation funetion:

X,
l M(z(x). z(x + Av)) = 11_ R(Ax) = ;ITZr:, cos(Ax) = r(Ax) (3.56)

&= =1

The same ean be written for the eorrelation between y(x) and y(x+Ax):

N,
%M(y(x), wx+ Ar)) = IL R(Ax) = ZLI Z i eos(Ar) = r(Ar) (3.57)
=1

The eovarianee matrix ean be written as:

] r{Ax) 0 c(Ax)
r{Ax) 1 —(Ax) 0
- — I-
A 0  —¢(Ax) 1 r(Ax) (3.58)

c(Ax) 0 rHAx) 1

The four-dimensional normal distribution is expressed as:
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: ] |
o m— —— Sy oP
/@) (2n)',/delih’je)(p( 2 J
(3.59)
1 1 4 4 -
T~ = K'vu
(2n)‘,/dc1(1\’iem[ ZZIZI J

Here the superscript 7 stands for the transpose operation. It converts a vector-column into
a vector-row. K™' is an inverse covariance matrix. It is expressed as:

1 —r(Ax) 0 —c(Ax)
-l = 1 —r(Ax) ] c(Ax) 0 )
B (e V- (p(Ax))z 0 c(Ax) 1 —r(Ax) (3.60)

—c(Ax) 0 —r(Ax) 1

Here

P(AY) = {1 - r(AY)? - ¢(Ax)? (3.61)

The determinant of the covariance matrix is:

det(K(AD)) = V(1 - r(Ax)” —c(Ax)* = (V p(ax))' (3.62)

Substitution of (3.62) and (3.60) into (3.59) yiclds the following expression for the four-

dimensional distribution:
(0 e - e‘ip(-—l (2 +y7+22 47
' (avypr T\ 2pr T T (3.63)
("“ 2r(xx; + »,y,) —2clxy, +."1x2)))

To avoid a bulky formula, the following nomenclature was uscd in formula (3.63):

= Z(X) L= Z(.\’+A\’) T — F(AT) : Lapl= p(AT) -
M=Mx) L oy =yx+AY) 5 c=r(Ax) (3.64)

Formula (3.63) describes probability density in the four-dimensional space with

coordinates: z, 22, ¥, ¥2. The next step is to re-write it in polar coordinates, which is

detined as follows:
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a=1/z?+y7 z =acos(d)

, 3.65
d)=arctan[i) ¥ = asin{d) S
The new coordinates are:
a =a(x) ; a,=a(x+Ax)
(3.66)

G =D(x) ;. D, =D(x+Av)

To complcte the transition, two pairs of reetangular coordinates (z). y)) and (2. y;) are
substituted with (@), ®)) and (a;. @;). Then the expression needs to be multiplied by a; a»
as the element of the area in the polar coordinates a d< da.

ad ] s a
fla,a,.®,,®,)=—F—exp ———la; +a; -
N (7 17 2Wp i (3.67)

- 2raa, cos(®, — ) 2caa, sin(d, —d,)))

The expression (3.67) can be turther simplified by the substitution:

N c{Ax) .
T(Ax) = arctan( r(Ar)] (3.68)

: na | T 5
f(u,a,.d),q).)="—"‘,cx ——a +a; -
FACTIG TR ST (?-.Ttl')')p' p W ( i ;

—2a,a,4/1- p’ cos(®, — B, —y))

(3.69)

3.3.4 Distribution of Phase and Its Derivative

The joint distribution of phases in two points can be obtained by integration of the
distribution (3.69) by the value of envelope ¢, and a;

(D, D)= JI_f'(a, Ja,. D D) dada,

090

= p&, ] + i = [%+arcsin(m)}

s

(3.70)
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Where
K =4/1-p’ cos(d, -, —v) (3.71)

The joint distribution of the phase and its derivative can be derived from the joint
distribution (3.70). This problem can be classified as multivariatc probability
transformation, when the distribution of one random vector 1s denved from the
distribution of the other random vector. It also implies that these random vectors are
rclated to the deterministic vector valued function.

.{DI = (I)I 379
@) T\, (57

The derivative is defined as a limit:

. D, -]
®; = lim—2—1

Ax=s0 Ax (-; 73)

Formula (3.73) rcpresents a component of a vector-valued deterministic function
of a random vector; the other component is:

=R v 3.74
LD,/ | lim £~ L)
- Ar—0 Ax'

Since the first component of the function (3.74) maps @, into itself and docs not
depend on Ax. the symbol of limit can be applied to the entire function:

(DI . (DI .
& =lim{ &, - @, (3735

Ar—H
Ax

[1):

Assuming Ax being small:
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[1]

-'.(Dl
._(DR.-.

The formulation of the problem of multivariate probability transformation is
completed. Its solution is well-known from the general theory of probability (see, for
example, Goodman 1985):

[P,
o 7| P2- P (3.76)

£ (@0 = (8 ) £ (@,.0,). W (@, D)) (3.77)

Here vector valued function W' is an inverse to the vector valued function = and
Jstands for the determinant of Jacobean matrix.

(D,}_ql_ cb,]_ ®, -
o,  |lo) (@ +0A (3.78)

The determinant of the Jacobean matrix of the inverse function is expressed as:

(8‘1’,’((1),,(1)]) O (D, D))

: _ ' 10
J)=de| _ OO @5 e b = Ax (3.79)
MV (D,. D)) (D, D)) 1 Ax
oD, o’

Substitution of (3.79) and (3.78) into (3.77) to thc following cxpression for the
approximate joint distribution:

D, D))= Ax- f(D,, D, + D] Ax) (3.80)

The exact distribution of the envelope and its derivative is actually a limit of
(3.80), when Ax tends to zero:

1(®,.0})=lim (ax- £(©,, @, +jAx))

A

2 (3.81)
= lim 2 A1x 1 —+ £ [E+arcsin(s))| ’
Avd 4 | 1-€° (] _82)‘ 2
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Where ¢ is defined as:

£=1- p’ cos(®]Av - y(Ax)) (3.82)

Taking that into account. in accordance with equation (3.68)

lim y(Ax) = lim arctan c(ax) = arctan g =0 (3.83)
Ar—0 Av—0 r(A‘-) 1

The valuc of correlation and cross-correlation at zero
r0Y=1; c(0)=0 (3.84)

While in accordance with equation (3.61)

. T _ 2 _ 2 _

un,]n P(Ax) = &n}n\/l r{(Ax)" —c(Ax)" =0 (3.85)
The limit of € can be evaluated as

l&_ll})f:(/&\") =1 (3.86)

This lecads to uncertainty 0/0, if a limit in (3.81) is attempted. To overcomc this
unccrtainty, the quantities depending on Ax may be expanded into Taylor series about the
zcro point (the Maclaurin series)

. , 1 . | 2. 9
P(AXY = p(0) +Fp'(0)' A’c+’)—'p”(0)‘Ax‘ +... (3.87)
Consider the derivatives in (3.87):

] Z_L _ 2 2
p'(0) ‘dm(‘ r(Ax)’ = c(Ax) )M T

= =2(r(AV)r'(Ax) + c(AX)(AD))|
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p"(0) = —d—(— 2r (AW (Ax) - 2c(Ax)C(AX))| =
dAx =0 (3.89)

= 2 (A" (AY) + (AY)” + (A" (Ax) + (AY) )

=0

The derivatives of the auto- and eross-eorrelation funetions are:

F(Ax) = Ii ;[S(k)k sin(kAx )k (3.90)
r"(Ax) = —%:‘IS(k)kz cos{kAx ik (3.91)
¢'(Ax) = —% ;[S(k)k cos(kAx Jdk (3.92)
¢"(Ax) = —% :jS(k)kJ sin(kAx )dk (3.93)

The values of these derivatives at Ax = 0 arc expressed as:

r(0y = —%;[S(k)k sin(kAx = 0)cdk =0 (3.94)
r'(0) = —% ;[S(k)k: cos(kAx = 0)ddk = Il ;[.*I(k)k?dk =k (3.95)
c'(0) = Ll ;[S(k)k cos(kAx = 0)ddk = Il ;[S(k)k dk = k, (3.96)
(0= —% :jS(k)k-‘ sin{kAx = 0)dk = 0 (3.97)

The value —¢'(0) 1s the mean wave ky as determined from the speetral density, while the
quantity —r"(0) has a meaning of the second moment of the speetral area, normalized by

the variance and expressed in term of wave number. Its usual nomenelature is 5. As a
result, the equation (3.87) ean be re-written as:

2 ] ' ]- " bl P b ~ b3
p(Ax)? = p(0)? +op (O)ZAHE PUOYAC +...x (k] -k JAx” (3.98)
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Similar formulae can be derived for other functions:

e(Av)’ ~1*((‘1>' ¢ (0)) ()40 v’ - 3
(((D k) k:_k ))Ax 3.99)

1-£(A¥) = (@ - (0 ( "(0)+¢'(0)? J]av’ = 3
(@ k, o (62 -k e o

Substitution of equations (3.98) through (3.100) into (3.81) removces uncertainty
and reveals the final result:

k:—k}

2\/(((1)' k) + (k2 -k2))

Note that equation (3.101) does not contain phase, @, only its derivative. This
mcans phase and its derivatives are independent.

S, =

(3.101)

tql__
A

3.3.5 Distribution of Envelope and Derivative of Phase

The procedure described in subsection 3.3.4 can be applicd in order to derive the
four-dimensional joint distribution of envelope, phases, and their derivatives. This is still
a multivariate probability transformation. applied to the distribution (3.69) using the
following vector valued function:

(aq, ) (a,
th @ lim 92— # a,—a,
a = 4 At Ay = Ax
== = =2 = 3.102
D, b, D, D, D, ( )
(D; (Dz li (Dz (DI (Dz q)z _(DI
Av—{ Ax \ Ax /

The approximate inverse function is
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a a, a,

d, - a a, +ajAx

S =Y = (3.103)
@, o | |o
D, ® D, + DAY

1 0 0 0

v )=def - A0 0 A (3.104)
‘ 0O 0 1 0
0O 0 1 Avx

To derive the four-dimensional distribution, the Jacobean and the approximate
inverse function (3.103} are used with the original distribution (3.69):

fla,.a). @)= l\il_nl (A'c? fla.a, +a'Ax, D, D, +(D;A\')) (3.105)

After the substitution and evaluation of the limit. the final result is expressed as:

2 r2 2 r2 " ] 2
f(a. a'. o, (Dr) i u e\'p(— a’ +a 2k, + k,_)

47{’(/{: —kl’)l.) - 21,(},{; _k;) ] (3106)

The joint distribution of the envelope and derivative of phase can be derived by
the integration of (3.106):

fa, @)= J- J-f(a. a',», D )dd db =

2

1 a’ ol a’+ a"((l)'? =2k D"+ k,) D P
6‘-47[2(](; _klz )1,2 pr( 2V(k: _kl«) ]dﬂ J-d(l) =

i
B a cxp[— a.‘(qy: — 2%+ k;)Jx (3.107)
ERTN G (e Ml W )

r2

b ] a -
5[ JEI(;;—_IT)T cxp(— 2I"(kf Y )] da Jd(l)

This integration does not create any difficulties, the first integral equals unity while the
second integral equal 2m:
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f '(a, (I)') =

o a0 - 2k, + k7)
exp| - (3.108)

JZn(k; —k,n)\/-ir_} ZV(kz: "klz)

3.3.6 Joint Distribution of Wave Amplitude and Wave Number

As a spectrum of wind-driven waves usually has a peak, which contains a
significant part of the wave energy, the phase in the equation (3.27) may be prescnted as

O(x)=D'(x)x + Y *(x) = k(x)x +y(x) (3.109)

Here k(x} is a relatively slowly changing wave number assoeiated with the absolute value
of the spatial derivative of the phase @’ The rest of the phase is presented as a stochastie
proeess, y*x), or y(x). These figures are not essential here: their role is to model the
spatial autocorrelation funetion, where only a single wave event is addressed.

k(x)y=D'(x)| (3.110}

To derive the joint distribution of wave number and wave amplitudes, the derivative of
the phase in (3.108) needs to be substituted by its absolute value. The absolute value of
the derivative of the phase, @ can be considered as a deterministie function of a random
variable. This is again the problem of multivariate probability transformation. Because
only one variable is involved in the transformation, the problem can be solved as onc-
dimensional using conditional distribution.

Consider the conditional distribution of the derivative of the phase, taking into
aecount that the distribution of amplitude (envelope) follows Rayleigh (3.51)

' fla, @) a a’ ((I)'—k,)?]
B a)== = e —_—_— 7
T =y ~ Je—x vy x‘{ K-k L
The function of the absolute value is:
heghy=12 ¥ ¥>0 3.112
SRS - otherwise s

This function is not monotonic, but it has two monotonice sub-domains. Therefore,
its distribution contains two components:

Sy = (U vi(k) | +f (v, (k) | vi(k) | (3.113)
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Here v(k) is a funetion inverse to (3.112) and v’is its derivative, Because the function « is
not monotonie, its inverse expression is not single-valued, so two values exist at the same
time for all &, and its denivative is also dual-valued:

=" =l 3114

vik)= v, =—@' R v, = -1 (3.114)
Therefore,

Sk =SB |1 +f(=k)[1]= f(k)+ [ (=k) (3.115)

The applieation of (3.115) for (3.113) yields the conditional distribution of wave number:

Sflkla)=flk|a)+ f(-k|a)=
_a [cxp(_ @ (k=) ]pr[__a_' (K + k) D (3.116)
VK2 =k 2y (k- k) 2V (ky —k7)

Finally the joint distribution of wave number and amplitudes is expressed as:

fla. k)= fa)f(k|a)=

@ [ e ] [ a’ (I(—I(I')2 w
= =ty —— [ eXpri— ————— | N
Jk -k 2wy 2 2V (ki -k}

@ (k+k) ] (3.117)
2V (k; — kD)
3.3.7 Numerical Example

Sample ecaleulations were performed to illustrate the distributions derived with
Envelope Theory. A Bretschneider speetral density was used (Lewis 1989):

s(oy=4-0" exp(—— Boy 1) (3.118)

Here @ is wave frequency, while 4 and B are constants defined through the significant
wave height Hs and the period corresponding to mean frequeney 7).

A=17‘3-%; B=691-T" (3.119)

The period corresponding to the mean frequeney has the following relation with
the mean zero-erossing period 7. and modal period of the speetrum 7,
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I, =071-7,; 1,=0.773.-T, (3.120)

The spectral density used for further sample calculations is shown in Figure 3.2,

T 3
s{m), m™ s

T
207

107

i i i i =

0 0.2 0.4 0.6 0.8 |

o

Figurc 3.2 Temporal Spectral Density for Bretschneider Spectrum for Significant Wave Height=11.5
m and Modal Wave Period=16.4s

Transition to the spatial spectral density is done through the dispersion relation
(3.26). As the variance in space and time must be the same, the derivation of spatial
spectral density is a substitution of variables from a mathematical point of view:

V= j (m)dm—-j \/g_ dk _[S(k)dk @28
Hcre S(k) stands for spatial spectral density:

Sty =slygk )‘E (3.122)

The spatial spectral density for the numerical example is shown in Figure 3.3

SO0 -

S{k). m”
400
300+
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k.m’
+ —t ; —— ; f ; } i
0 0.01 0,02 0.03 0.04 0.05 0.06 0.07 0.08

Figure 3.3 Spaiial Speciral Density for Bretschneider Spectrum for Significant Wave Heighl= 11.5 m
and Modal Wave Period= 164 s
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Numerieal integration in formulae (3.95) and (3.96) encounters convergenee
difficulties caused by the empirical nature of the Bretsehneider formula (3.118). To
avoid this diftieulty, an upper limit is established for wave frequeney (Lewis 1989)

®,, =50, =1.9165" (3.123)
Here oy, 1s a modal frequency:
2n
On =2 (3.124)

m

The dispersion relation leads to the following expression for the upper limit of the wave
number:

K, =m (3.125)

Tim
g
Then the mean value of wave number is expressed as:

"’hm ey

=— I?(k)k dk:— js(m)—dm_o 028 (3.126)

The value of &, (related to the seceond moment of the speetral arca, normalized by the
variance):

Ay Diym 4
k, \/ IS(k)k dk = \/l I.\(m)ldm =0.0397 (3.127)
W7 b4

The marginal distribution of the amplitude (envelope). defined by formula (3.51).
does not differ for temporal or spatial eonsideration. It is shown in Figure 3.4. The
marginal distribution of the derivative of phase ean be casily obtained from equation
(3.101) by taking into aceount that phase is distributed uniformly from 0 to 2m (sec
Figure 3.5a).

e f(q kI ~k|
f(@)= (3.128)
f (@ -y + (k2 -&2))

03.1__”:”

0.2

0.1+

i, m
0 2 1 -3 8 10 12

Figure 3.4 Marginal Distribution of the Amplitude / Envelope {(Rayleigh Distribution)
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The marginal distribution of the wave number can be evaluated using formulac (3.115)
and (3.128). The distribution is shown in Figure 3.5b.

: k2 -k? k2 -k’
GE — i — (3.129)

ok -k +k2-82) 2k k) + (6 -)

b)

20T 20 T
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P k)
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o . m M km
+ f

+ : = : { fr——}
-0.2 0.1 0 0.1 0.2 0.3 0 0.l 0.2 0.3

Figure 3.5 Margioal Distribution of (a) the Derivation of Phasc and (b) the Wave Number

Figure 3.6 shows conditional distributions for the derivative of the phase (Figure
3.6a) and the wave number (Figure 3.6b) ecalculated for a series of sample amplitudc
value, With the incrcase of the amplitude, both distributions become “thinner,” and the
variancc must be deereasing. At the same time, the conditional distribution of the
derivative of the phasc remains unchanged, while the distribution of wave number
experiences some shift. The shape of the distribution of the derivative of the phasc
appears to bc normal, A closcr look at the formula (3.111) revcals a normal distribution
for the conditional derivative of the phase, with the variance and mean value expressed as
follows:

rep? 2
m® | ay=k,: I'((D'lc:)=”—k2:m (3.130)
&

The mean value and variance for the conditional distribution of the wave number cannot
be expresscd through elementary functions. At the same time, the distribution (3.116} is
the distribution of the absolute value of a normal variable (folded normal distribution).
The mcan value and varianee of the folded normal distribution are known and can be
used to express the conditional mean value and the conditional variance of the wave
number as funetion of amplitude. The conditional mean value is expressed as:
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""ka(ﬂ)— ’Zl ()'f ( — (kz—k )]+

(3.131)
k|1-2F,| - “1
l(k —k )
Wherc
X I?
F(x)= jexp[-7]ffz (3.132)
a) 30T 30 +2)
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Figure 3.6 Conditional Distrihution of the Derivative of the Phase (a) and the Wave Number (b),
Calculated for Sample Values of the Amplitude

The conditional variance of the wave number is ¢xpressed as:

rep? 12 7 12 L
’}q(a)=k,2+!k_11ﬂ_ 1 12Vk; —k, )e.\'p ___ja:k_,_ )
a { T 21 (k: —f\]")

Ty SER .
W -k

The graphs for thesc functions are given in Figure 3.7. For the considered
example, the conditional mean value and variance of the derivative of the phase and the
wave number converge starting at a valuc of wave amplitude of 5 m. This also mecans
that the lengths of large waves arc likely to have a length close to the mean, as the
variance of the wave number deceases quickly with the growth of amplitude.

(3.133)
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Figure 3.7 Conditionzl Mean Value (a) and Variance (b) of the Derivative of the Phase (Dashed) and
the Wave Number (Solid), as Functions of Wave Amplitude

Finally, Figure 3.8 shows plots for the joint distributions of the amplitude and the
derivative of phase (Figure 3.8a) and the wave number (Figure 3.8b).

The latter
reprcsents the final result of this study, as it ean be used to estimate the probability of
encounter with thc wave of a certain height and length.

a)

b) | fak)

Figure 3.8 Joint Distributions of the Amplitude and the Derivative of the Phase {a) and the
Amplitude and the Wave Number (b)

3.4 Level 1 Vulnerability Criteria

Both parametric roll and pure loss of stability are driven by stability variations in

As was discussed in subsection 2.1.1, certain featurcs of the hull shape arc
“responsiblc™ for stability. The level 1 eriterion proposed here is focused on these

paramctric roll and pure loss of stability.

geometrie features. In principle, this criterion ean be used as the lcvel 1 criterion for both
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Because both modes of intaet stability failure considered herc, pure-loss and
parametric roll, are fundamentally a result of the relation between variations in the arca of
the waterplane and the location of the wave erest along the hull, a eommon eriterion to
assess level 1 wvulnerability is proposed. However, this was not applied for level 1
parametric roll criteria, the reasons for which were diseussed in the previous seetion.
Four prospective criteria are discussed, along with the results for the sample ships

A method to assess level 1 vulnerability to pure-loss of stability. based on static
charactcristics of the hull form, is proposed and four criteria were examined. The first
griterion considered the valuc of the total coefficient for vertical “wall-sidedness.” Ciys,
or the variability of hull shape from the maximum dimensions over the range of draft,
max(4,, (). ze[d-Ad:d+Ad], which is similar to the more traditional vertical
prismatic coefficient, C,p, taken from the calm waterplane. This provides an indication of

the change of the shape of the hull from the volume projected using the maximum
waterplane dimensions ovcer the vertical height of the ship.

d+Ad

JA”-,, (z )= P

Cppg =t . Ad= (—,—,D—d]
S = rnax(4,,(2))- 25d "M 2720

(3.134)

The second criterion considercd the average of the vertical wall-sidcdness
cocfficients for the fore and aft quarter portions of the hull, both above and below the
waterline (see Figure 3.9). For each of the four sections (fore, aft, above, and below), the
Cyws was computed as the fraction of the volume from the maximum waterplane
projection for the given section. Then the average value for the four scctions was used to
provide an indication of the total relative changes for the bow and stern shapes. both
above and below the waterline because these arc the regions the form variations typically
occur.

o n e e R e e = e
~Eee %
s e e e e e e s
L/4 L4

v
A

3
X9

L

Figure 3.9 Notional Ship Profile With the Four Portions of the Cyyy Considered for the Level 1
Vulnerability Assessment

The third criterion considered the ratio of the transverse met centric radius to the
height of the transverse mctacenter above the keel.
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_ BM

Cl,=—
KM

(3.135)

T'he fourth eriterion eonsidered the ratio of the transverse metacentrie radius to the
beam.

Cl,=— (3.136)

The first eriterion does not show any elear separation between the ships which are
known to be vulnerable and the ships whieh are not (Figure 3.10 ). However, the seeond
eriterion, the average of the vertical wall-sidedness coefficient for the fore and aft
quarters of the ship, seems to provide useful separation between the ships (Figure 3.11)
for this sample population.
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Figure 3.10 Tolal Cyy, Both Above and Below the Waterline, for the Sample Ship Populalion

Based on this sample population of ships, an initial estimate of the threshold for
the standard eould be proposed around 0.75-0.80. Ships above this value, the Bulk
Carrier, Tanker, and Series 60 are eonsidered to be eonventional vessels, not at risk for
failures related to righting lever variations in waves. However, all of the other nine ships
fall below this value, the highest being the General Cargo ship 2, or C4, with a value of
0.75. The ships with the lowest values are Containership 5 (the C-11 eontainership) and
the RoPax, which have values of 0.69 and 0.67, respeetively




Of the four vertical wall-sidedness coefficients, fore and aft quarter, above and
below the waterline, the aft coefficient above the waterline has the least variation for the
ship population examined. However, in order to still account for ships outside this
population, including ones with unconventional topside stern shapes, this eftect should
still be included.

1 £ Aft 1/4, Above Waterline
U Fore 1/4, Above Waterline
E Aft 1/4, Below Waterline
{Fore 1/4, Below Watertine

Figure 3.11 Total Average Cyyy for the Fore and Aft Quarters of the Ship, both Above and Below the
Waterline, for the Sample Ship Population

The third and the fourth criteria, using ratios with the transverse metacentric
radius, did not show any clear separation between thc ships which arc known to be
vulnerable and the ships which arc not.

The proposed method for level 1 vulnerability assessment does not consider the
relative size of the ship and the waves. Typically, it is assumed that higher sca states arc
more likely to result in stability failure. However, waves of large height arc more likely
to have larger length and waves of large length may not greatly affect stability, depending
on their comparison with ship length. This important consideration is included in further
study. discussed below.
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3.5 Level 2 Vulnerability Criteria

3.5.1 Formulation of the Criteria

As was discussed earlier in this section, pure loss of stability may be considered
as a single wave event because of instantancous changes in waterplane arca. Typically,
the worst-case wave length is elose to the length of the ship, A/L = 0.75~2.0. However, in
order to account for the effeet of ship size relative to the wave conditions, righting lever
variations should be evaluated in irregular waves. To characterize an event of pure loss of
stability, the distribution of random wave numbers and wave amplitudcs. f{a. &), is used to
evaluate the statistical weight of a wave encounter:

o +Aa k, +AK

w,= [ [flakdida (3.137)

a=Aak = Ak

The GAM value is caleulated for each sinusoidal wave, with characteristics as
defined above. These caleulations are repeated for different positions of the wave erest
along the ship length, so a complete wave pass is presented.

Calculation of the ime while the stability is decreased can be casily performed
when the GM is considered as a function of the wave crest. The eritical GM was
calculated in accordance with the 2008 1S Code (Figure 3.12).

GM change due 10 wave pass

P
5=l 7 F"‘—».___-l

~— | xl x2 /

Critical GM 7

IN[A

Position of wave crest. m

Figure 3,12 Calculation of “Time-Below-Critical-GM”

Points x1 and x2 (Figure 3.12) show the distance when the (GA remains below the
critical level (based on 2008 1S Code), while the wave passes the ship. The “time-
duration-below-critical GM™, rhc, can be caleulated as:

x2-xl
the =

(3.138)

C—V¥,
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whcre ¢ 1s wave celerity and ¥ 1s ship speed. The time—below—critical GAf 1s a random
number in irregular waves, [ts mean value is estimated as:

m(thcy =YY the, W, (3.139)

The eriterion value, Crl, is proposed as the following ratio:

Crl= m(thc)

(3.140)
o

This criterion assesses the significance of stability changes in waves. It stability is
degraded only for a short duration, the resulting ship response may not be significant.
However, for longer durations of decrcased stability below the critical level, the restoring
moment may be degraded enough to result in a dangerously large heel angle.

The justification of assigning a critical level of GM can be done in a following
way. As the GM vanation due lo the wave-pass takes care of waterplanc changes, the
critical GM has 1o take into account the features of hull form that can provide additional
buovaney at large heel angles. The influence of these features, such a flarcd bow, is
reflected in the position of the maximum of the calm-water GZ curve. This can be
illustrated by a comparison of the (+Z curve of two notional ships from ONR topside
serics (Bishop. et al., 2005). These ships have exactly the same hull shape below the
calm-water watcrline, but differ in topside configuration, onc with flarc and onc with
tumblehome. To illustrate the effect of topside configuration, Figure 3.13 shows the GZ
curve calculated for the same value of KG for each of the two topside configurations.

|
llllI

I y —————

T R

- \d,a, deg
: 80 100 120
0.5 \

=1
Figure 3,13 Geometries and the GZ Curves of the ONR Tumblehome (Naval Comhatant 2) and
Flared (Naval Combatant 1) Topside Configurations (KG=7.5 m in Both Cascs)
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As shown in Figure 3.13, the angle of maximum GZ of the flared topside
configuration is mueh larger than that of the tumblehome topside configuration. The
difference in the value of the maximum of the GZ eurve is even more dramatic.
Howcver, the angle of thc maximum of the GZ curve is a preferable measurc. Stability
failure near a wave erest is a phenomenon occurring at a very small cncounter frequency,
while the wave erest is slowly moving along the hull. As a result, heeling may occur
almost statically; so in this case, the anglec of maximum represents the actual stability
range. All these parameters of the ealm water GZ curve are related to the 2008 1S Code
eriteria in one way or another. Therefore, setting the level of critical GM, based on these
criteria, scems to be rcasonable, because it takes into account the influence of large
volumes of buoyvaney that may be used as a stability reserve.

The second criterion is set to detect significant durations of ncgative GAM (see
Figure 3.14). The appearance of an angle of loll may Icad to the development of partial
stability failure faster, as the upright cquilibrium is no longer stable. It is quite possible
that some ships may be more vulnerable for thesc types of failure than others.

The second criterion, Cr2, is based on characteristies of the time during which the

angle of loll exceeds a certain limit angle, @ (30 degrees was used in this example). For
cach position of the wave crest along the hull, the indicator value, =. is calculated:

(3.141)

{0 ’f ¢J’uh’ <¢|ll‘l‘l
] If ¢'|’nh’ = ¢I1m

05 | Calm walter ’

0.5 ¢ Wave crest

=] _.I,
Figure 3.14 Deterioration of GZ Curve Near the Wave Crest (Illustration Only).

The angle of loll, @,y can be obtained from the “true™ instantaneous GZ eurve in
waves, or from its approximation using a calm water GZ eurve and the instantaneous GAM
in waves:

The time while the angle of loll is too large during the wave pass is expressed as

thz = ;z,At (3.142)

where A is the time-step (providing at least seven steps per period) and index &
corresponds to a particular time instant during the wave passing.
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Formulation of the second criterion is similar to the first onc:

, m(thz)
cra = (3.143)
¢
where m(thz) is the weighted average over the wave encounters:
"i'([b:)z"ZZ’bz””:, (‘3]44)

Results of calculations using the sample population of ships are discussed further
in subsection 3.5.3.

3.5.2 Evaluation of Stability in Waves

Details of the cvaluation of the GM in waves for the asscssment of purc loss of
stability are presented in this subscction. The encounter frequency of waves in the
situation wherc purc loss of stability is possiblc (following and stern-quartering scas) is
low. Therefore, static balancing in trim and draft becomes rclevant.

The area at each station and its moment relative to the vertical axis are expressed
as function of the local draft, accounting for the sinkage and the trim:

A(z)= 2:[:‘), (z)dz Mz, (2)= EI:b, (z)dz (3.145)

i indicates the station number. 5i(z) is the halt-breadth at station i, at the tocal draft =. The
volumetric displacement can be expressed as a function of the position of a wave crest an
array of local drafis z ={z,}.i=1LN:

Ag =l
I'("‘:(""“‘—;) =05 Z(Ar (zr )+ ‘1rvl (:a- ] )X'YHJ -4 ) (‘; 1 4())
=]

x; is the coordinate of the i-th station in the ship-fixed coordinate system.

The moments of the hull relative to vertical and longitudinal axes are expressed
using a similar formulation:
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N, -1
MZ(x.,5) = 0.5 (Mz,(2,)+ Mz, , (2, )% — %) (3.147)
i=]

Nyl
MY (x0,2) = 0.5 3 (%,4,(2,) + X,y A,y (2,0 K50 — %) (3.148)
i=l

Formulae (3.146) through (3.148) can be used to express coordinates for the
center of buoyancy:

MZ (x5
B Uty pie 8iag ) s

LCB(x,.2)=— =l - =
: V{x;.Z) Vix, .z2)

(3.149)

Consideration of the time for the change of stability in waves is redundant and the
wave profile along the hull is considered as a function of wave crest position only.
Therefore, the local draft at each station comes from the formula, deseribing wave
elevations along the hull, and depends on sinkage and trim.

C{x,x.)=acos(k(x —x,)) (3.150)

To account for the trim on the wave profile, the following auxiliary funetion is
introduced:

=(x,.z,.0.x.)= acos[k(x, cosO—z, sinb—x,. )]— (x, sinb+z, cosO) (3.151)

This funetion equals zero when a point with coordinates x; and z; is exactly at the surface
of the wave of amplitude ay-, rotated by the trim angle 6. Then the elevation of the wave
profile at the i-th station is defined through the inverse of the function Z, caleulated for
cach station loeated at x;:

24, (0.24.%,,x. )= INV(S(x,,z2,.0,x,. ))+ T (3.152)

Where zgis the value of parallel sinkage.

The wave profile along the ship hull is evaluated by satistying equilibrium
conditions through solving the following system of nonlinear algebraic equations, with
trim and sinkage as unknowns

{l"(x(..zw,‘ (0.20.x,x ) =V, (3.153)

LCB(X,..2,,(0,2,.%,.x.)) = LCB,

Once sinkage and trim are found, the profile of the wave along the hull ean be found as:
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2=z, (9,2 56 0:.) (3.154)

The moment of tnertia of the waterplane made by the wave profile is:

] N,
li(x) =5 D HEAL LA CIN) CAEED (3.155)
=l
Other hydrostatic terms are also needed to determine GAM
MZ(x..zZ Ax,
KB(x.) =w: BM(x,) =# (3.156)

4] 0
Finally the value of GM in waves ts a function of the positton of a wave erest
GM(x,.)=BM(x,.)—-KG+ KB(x.) (3.157)

It is known that balaneing a ship (finding its equilibriumi position) with sinkage
and trim may signifieantly ehange the result for determining GZ in waves. To
demonstrate this effeet, the ealculations deseribed above ean be eomplemented by partial
balaneing (sinkage/displacement only) or no balaneing results. This demonstration is
important, beeause balanetng ts the most intensive part of the ealeulation.

Partial balaneing is implemented by setting 0 = 6y (1o the ealm water value) in
formula (3.152); this eonverts a system of equations (3.153) into a single equation:

W2, 10, = 0 s e =k (3.158)

Results for th¢ moment of inertia of the area of the waterplane are shown in Figure 3.15.

Balanced: sinkage and trim

“““ Balanced: sinkage only
590" e

Moment of inertia of the waterplane, m*

Unbalanced
5.10* -
I S St
180" - e < g R
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~ e
S, P
"‘“ _""
4 T
1.6-10
=80 =60 =40 =20 0 20 40 60 80

Wave crest position, m

Figure 3.15 Change of the Moment of Inertia of the Area of the Waterline with Moving Wave Crest
for Different Type of Balaneing for ONR Tumhlehome Topside Ship (Naval Comhatant 2)

Figure 3.15 elearly shows that balaneing both sinkage and trim results in a
signifieant differenee for the moment of inertia of the waterplane. It ean also be seen
from Figure 3.16, whteh shows the change of BAM. The ecaleulation of BM without
balaneing is done using the resulting volumetrte displaecment from the wave crest
position.
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{(x:)
(X Z)

BM{x }= (3.159)

A similar approach was used to calculate the unbalanced KB, which is shown in

Figure 3.17.

MZ(x, .T)
— Sl P
KB(X(‘)—f (3]60)
iz, .2)
BM, m . .
7 2 Balanced: sinkage and trim
""" Balanced: sinkage only
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Figure 3.16 Change of the BM Value with Moving Wave Crest for Different Type of Balancing for
ONR Tumblehome Topside Ship (Naval Combatant 2)
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Figure 3.17 Change of the AB Value with Moving Wave Crest for Different Type of Balancing for
ONR Tumblehome Topside Ship (Naval Combatant 2)
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As seen in Figure 3.17, balancing with sinkage has the most influence for the KB
value. Figure 3.18 shows (GM in waves calculated with different balancing options. It is
clear from Figurc 3.18 that thesc balancing options have a significant influence on the
intial stability in waves. Two features should also be noted. First, the magnitude of the
change of stability is the largest for the unbalanced results. Second, the ONR
tumblehome topside ship is an example of an unconventional vessel and, therefore. the
observations of Figure 3.15 through Figure 3.18 may be generally applicable.

Stability changes in waves are not limited to (A, the entire GZ curve expericnces
changes. The main advantage of using G A is simplicity and to cnable the possibility to
perform spreadshect style calculations. Using GAM only for the evaluation of stability in
wavcs also can be considered as an approximation, where the change of GM in waves is
used to “modulate” the calm-water GZ curve.

- Balanced: sinkage and 1rim

GM Change in Waves

""" Balanced: sinkage only
T ——— Unbalanced
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Figure 3.18 Change of GM in Waves with Moving Wave Crest for Different Type of Balancing for
ONR Tumbhlehome Topside Ship (Naval Combalani 2)

GZ($.x,.) = GZ,($) —(GM, ~ GM(x,.))sin(0) (3.161)

To evaluate the level of approximation introduced by “modulation™ (3.161), the
entirc GZ curve was computed using a prcprocessor, PRELMP, of the advanced panel
code LAMP (Lin and Yue, 1990; 1993). The preprocessor uses a quasi-static wave and
computcs the righting moment by integrating pressurcs around the hull. Another tool
capable of performing these calculations is EUREKA (Paulling, 1961). It was
demonstrated that PRELMP calculations arc identical to £FUREKA (Belenky and Weems,
2008). The results of the direct calculation of the GZ curve in waves for the same
conditions are shown in Figure 3.19, while Figurc 3.20 shows the approximate
“modulated” GZ curve.
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Figure 3.19 GZ Curve of the ONR Tumblchome Topside Ship in Wave Calculaled with PRELMP
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Figure 3.20 GZ Curve in Wave of the ONR Tumblehome Topside Ship Approximaled wilh
Formula (3.161)

The comparison between GZ curves in Figure 3.19 and Figure 3.20 shows the
generally conservative character of approximation (3.161) as the influence of the wave, in
general, is slightly exaggerated by the approximation (3.161). Despite the approximation,
which is not capable of representing all the details of stability changes in waves, the
approximation formula still seems to be a reasonable tool for vulnerability-level
assessment.

3.5.3 Results for Sample Population

Results are shown for calculations using the two criteria (Cr1 and Cr2) for the sample
ships (Figure 3.21, Figure 3.22 and Table 3). The results are given for Sea State 7 and an
operational speed of 15 knots, with the critical KG based on the conditions obtained from
compliance with the 2008 1S Code. Additional calculations were also made to examine
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the criterion values as a function of the sea state. An example of this is presented n
Belenky and Bassler (2010).

Comparing the sample calculations for the level 2 probabilistic criterion, Crl, it
can be observed that there is a great distinction between the Fishing Vessel | (ITTC-A2)
and the Naval Combatant 2 (ONR tumblehome topside hull). Both known to be
vulnerable to pure loss of stability {e.g. Spyrou, 1996; Umeda, e al., 1999: Bishop. ¢t al.,
2005; Umeda & Hashimoto, 2006; Bassler, ef al., 2007: Hashimoto. 2009), compared to
other ships, which are not known to be vulnerable to this type of stability failure. The
exception to this trend is the notional RolPax. Given these results, and the results of
sample calculations with a notional naval flecet (Belenky and Bassler, 2010), a standard
using the first criterion could be set at 1.0.

The second criterion indicates possible vulnerability for the notional RoPax vessel
that is similar to one that attained large roll angles in stern waves (MNZ, 2007). This is
due to the different specific mechanism of pure loss that was manifcsted for this ship
type. A standard using the second criterion could be set notionally at 0.05. However, this
should be examined with the results of additional sample ships which have increased
vulnerability for this mechanism of purc loss of stability.
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Figure 3.21 Calculation Results for the Level 2 YVulnerability Criterion Crl for Pure Loss of Stability
for the Sample Ships, Ship Specd of 15 kts, in Sea State 7
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Figure 3.22 Calculation Results for the Level 2 Vulnerability Criterion Cr2 for Pure Loss of Stability
for the Sample Ships, Ship Speed of 15 kts, in Sea State 7

Table 3 Results for Vulnerability Eevel 2 Pure Loss of Stability in Sca State 7

Type L GM Vs Crl Cr2
Fishing Vessel 1 (ITTC A2) 34.5 1.97 15 2.56 0.00
Naval Combatant 2 (ONR TH) 150 1.16 15 1.35 0.00
Passenger Ship 276.4 3.42 15 0.37 0.00
RoPax 137 0.36 15 0.34 0.11
Fishing Vessel 2 21.56 0.51 15 0.28 0.00 |
Naval Combatant | (ONR FL) 150 0.20 15 0.27 0.00
Bulk Carrier 275 4.19 15 0.19 0.00
| General Cargo 1 (560) 121.9 015 | 15 0.6 | 0.00 |
General Cargo 2 (C4) 161.2 0.15 15 0.14 0.00
Bulk Carrier 2 145 0.15 15 0.12 0.00
Tanker 320 1.72 15 0.08 0.00
Containership 4 283.2 0.15 15 0.08 0.00
Containership 5 (C11) 262 0.15 115 0.06 0.02
Containership 1 3226 0.15 15 0.06 0.01
LNG Carrier 267.8 015 | 15 005 | 000 |
Containership 3 330 0.15 15 0.05 0.00
Containership 2 376 0.15 15 0.04 0.00
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3.6 Summary

This section describes the development of vulnerability criteria for pure loss of
stability. Subsection 3.1 describes the physical background for this mode of stability
failure. The likelihood for this type of failure depends on the magnitude of the stability
changes. as well as the probability of encountering a dangcrous wave.

Taking into account the probabilistic character of pure loss of stability, subsection
3.2 revicws the basics of probability theory which are used for further development of
vulnerability criteria. In particular, an emphasis is made on the differences bctween
random variables and stochastic processes.

Because purc loss of stability is a singlc-wave cvent, the joint distribution of wave
numbcrs and wave amplitudes 1s a key to relate purce loss with irregular waves, while also

accounting for the relative size of the ship and the waves. Subsection 3.3 reviews a
derivation of this joint distribution, based on envelope theory.

A proposal for the level 1 vulnerability criterion is considered in subsection 3.4,
The proposal is based on the geometric characteristics of the hull, as these paramecters
reflect how significantly the watcrline may change during a wave pass and therc fore, are
also related to possible stability deterioration on the wave crest.

Section 3.5 considers two level 2 vulnerability criteria. The first one is based on
the average time that the ship’s GGM spends below the critical level during the wave pass.
Specification of the critical level is also discussed. The second criterion is bascd on the
likelihood of appearance of very large loll angles during the wave pass. Both criteria arc
based on the envelope presentation for irregular waves.

Sample calculations were performed using 17 ships.
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4 Vulnerability Criteria for Broaching-to and Surf-Riding

This section describes the development of vulnerability criteria for broaching-to,
including the physical background of this mode of stability failurc. Surf-riding
phenomenon usually precedes broaching-to, so determination of the vulnerability for
broaching-to can be performed by evaluating a ship’s propensity to surf-ride.
Additionally. the mathematical background necessary for vulnerability ¢riteria and two
methods of calculating the speed. and the development of levels 1 and 2 vulnerability
criteria, are presented. Sample caleulations were performed using 17 ships.

4.1 Physical Background

Broaching-to is a violent uncontrollable turn, occurring despitc maximum stcering
effort in the opposite direction. As with any other sharp turn event, broaching-to is
frequently accompanied with a large heel angle, which may lead to partial or total
stability failure. Broaching-to occurs in following and sterm-quartering scas.

Broaching-to is usually preceded by surf-riding. Surt-riding occurs when a wave,
approaching from the stern, capturcs a ship and accelerates its to the wave speed (wave
celerity). While surf-riding, the wave profile does not vary relative to the ship. Most
ships are directionally unstable in the surf-riding situation; this leads to the uncontrollable
turn, defined as broaching-to (or often, just “broaching™).

Therefore, the likelihood of surf-riding ean be used to formulate vulnerability
criteria for broaching-to. In order for surf-riding to occur, the wave length must be
within the range of 0.75~2.0 of the ship length and the ship spced should be around 75%
of the wave celerity (depending on wave steepness). Large ships are less likely to surf-
ride, as waves of the neccssary lengths usually are simply too fast compared to the ship
speed. Also, long and steep waves are rare.

Consider an example of surf-riding. Assume a wave with a length comparable to
ship length has a celerity of 30 kts. while the ship’s engine is set at an rpm that provides a
thrust corresponding to 20 kts in calm water (see Figure 4.1).

Sailing in calm watcr with a specd sct at 20 kts means that the thrust (with
account of the thrust reduction) produced by the propulsor equals the resistance at that
speed (20 kts). When the wave overtakes the ship, axial wave forces push the ship back
and forth, causing the ship to surge. During steady surf-riding, the ship’s speed equals the
speed of the wave. To move a ship with the speed of the wave (30 kts), the thrust
provided by the ship is not sufficient, and there is a difference between the ship™s thrust
for 20 kts and the resistancc of the ship at the (higher) wave speed.

As shown in Figurc 4.1, the axial wave (surge) force is too small to compensate
for this difference. Therefore, surf-riding is theoretically impossible at this specd
condition. As a result, surging is the only possible mode of motion.
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Difference between thrust {(produced by the propulsor with set rpm) and resistance, if the
ship advances with the speed of the wave

Figure 4.1 Surging in Following Waves. Surf-Riding is Impossible

Consider that the thrust sctting has been increased to 22 knots, in calm watcr.
Then the difference between the produced thrust and the resistance at the wave speed has
decreased. At this speed, the axial (surge) wave force is enough to compensate for this
difference and surf-riding becomes theoretically possible, but only if the ship is at a
certain position on the front of the wave (see Figure 4.2).

Surf-riding is a stable cquilibrium, achieved when a ship is located on the front
slope of the wave close to the trough — shown here with a black dot in Figure 4.2 (another
possible equilibrium is unstable — it 1s located ncar the wave crest, shown with a whitce
dot in Figure 4.2).

Now, there are two possible modes of motions: surt-riding and surging. The result
depends on the ship’s location along the wave length and the ship’s instantancous speed.
In order to observe surf-riding, the ship must be near the cquilibrium and have sufticient
instantancous speed. The first threshold eorresponds to a thrust that enables surf-riding
to be possible under certain (generally ideal) conditions.

Consider a further increase of the ship’s thrust up to 25 knots in calm water. The
difference between the ship’s thrust and the resistance at the wave speed has further
decreased. Now, the axial (surge) force is sufficient enough to cause surf-riding for a ship
located anywhere along the front of the wave. Therefore, surf-riding is the only mede of
motion, and surging is no longer possible (Figure 4.3).

The 2™ threshold corresponds to the speed setting where the surging ceascs to
exist and the surf-riding becomes inevitable at every position along the wave and any
instantancous speed.
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Figure 4.3 Surging is Not Possible - Surf-Riding is the Only Option
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Both speed thresholds depend on the wave length and steepness. Therefore, in a
realistic seaway they are random figures and the likelihood of exceeding one of these
thresholds can be uscd for vulnerability criteria. The calculations show that the 1%
threshold is easy to exceed, but in order to experience surf-riding, the instantancous speed
must be increased significantly when a ship 1s located at a particular position on a wave.
The probability of such a coincidence is quite low. Therefore, to avoid excessive
conservatism, the second threshold should be used for the criteria. Once it is excecded,
the surt-riding is guaranteed for this particular wave.

4.2 Mathematical Description of Surf-Riding in Following Seas

4.2.1 Review of Mathematical Tools — Phase Plane Analysis

Phase plane analysis is one of the main tools used in the development of
vulnerability criteria for surf-riding. This subsection includes a brief overview of this
tool.

A phasc planc (sometimes the term “phase portrait” is also used) is a plot of
velocity vs. motion. Each of the curves in the phase plane is called “phase trajectory™.
Each phase trajectory corresponds to a pair of initial conditions. For example. consider a
pendulum (Figure 4.4a). The equation ot small motions of a pendulum, without damping,
is expressed as:

i+opx=0 (4.1)

The two dots above the valuc x stands for the second derivative in time, i.e.
acceleration, and oy is the natural frequency of oscillations. A cosine (or sine} function is
an obvious solution for the equation (4.1), as the second derivative of the cosine function
turns it into itself, but with an opposite sign:

X =COSO,f (4.2)

. dx ]

*= 1 -, sin M7 4.3)

. dx 5

X=—=—-0, cose,f (4.4}
d[ 0 5

Substitution of (4.2} and (4.4} into differential equation (4.1). turns this equation
into a true equality; hence, the function (4.2) is the solution of the equation (4.1).

To reveal the form of the phase trajectory, the angular velocity (4.3) should be
expressed through the angle (4.2) and the time should be excluded from the equation. 1f
the angle (4.2) is multiplied by the natural frequency, then squared and added to the
squared velocity (4.3), trigonometric functions disappear and the elliptic form of the
phase trajectory becomes clear:
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wix® + % = o 4.5)

The phase trajectory described by formula (4.5) is shown in Figurc 4.4b. For the
solution (4.2), it starts at the point {1,0) of the phase plane. To see the initial conditions
corresponding to the solution (4.2), it is enough to set =0 in the formulae for anglc and
angular velocity:

x(1 =0)=cosw i =1

4.6
.‘é(l=0)=%=—mnsin(001=0 (46)
i

The phase trajectory (4.5) corresponds to other initial conditions as well. It can be
scen if the sinc function is used as the solution of equation {(4.1) instead of cosine. Then
the initial point will be (0,1). For this effect, a phase shift, £ can be introduced in the
solution (4.2):

X =cos(w,l +&) 4.7

This will move the initial point to {cos(€). -sin(e)), but will not change the phase
trajcctory {4.5). as shown in Figure 4.4b.

It is also casy to see that the introduction of amplitude {differcnt than I} into
function (4.7) does not invalidate it as a solution of the equation (4.1):

x = Acos(wyl +£) (4.8)
Howcver, this solution leads to a phase trajectory different than (4.5):

2
Wy 2

X +%x3 =1 (4.9)

b

A°

This trajectory is also an ellipse, but with different semi-axes, that is concentric to (4.5),
see Figure 4.4c. These different ellipses correspond to different initial angles and
therefore, show the differcnt amplitude of oscillation of the pendulum.

In general, different initial conditions (x,:x%,) lead to diffcrent valucs of

amplitude, 4. and phasc, &

B oo i
A= Jolx? +xl ; &=arctan—2 (4.10)

WXy
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The complete phase plane for the pendulum is a family of curves, showing how
angular velocity changes with anglc for different initial conditions. Figure 4.4¢ shows
the complete phase plane for the small motions of the pendulum, without damping. This
type of phase plane, being one of the basic forms, is called a “center™ phase plane.

The introduction of damping makes the sinusoidal motions dceay and turns the
phase plane from a sct of ellipses to a set of spirals, sec Figure 4.4d. The special term for
this typc of the phase plane is the “stable foeus.”

a) b) . c) : d)
/

I s
X e . v
tnitial point \

for x=eos(wl)

Figure 4.4 Example of an Oseillator — Pendulum {a), Phase Trajeelory without Damping for the
Solulion x=cos{oy) (b), Phase ’tanc without Dam ping (¢) Phase Plane with Damping (d)

Equation (4.1) is only valid for small deviations of the cquilibrium, where angles
are so small that the value of the sine funetion can be approximated by the value of the
angle expressed in radians. Therefore, it does not describe all the features of motions of
the pendulum. One of these features is an unstable equilibrium (shown in Figure 4.5a).
The “straight-up™ position is an equilibrium. as all of the forees are equal there. but it is
not stablc, as a small perturbation takes the pendulum back to the stable equilibrium.
Motions in the vicinity of the unstable equilibrium (without damping) ean also be
described by a lincar differential equation:

¥-w,x=0 4.11)

The phase plane of these motions is shown in Figure 4.5b. Depending on how the
perturbation was delivered (only displacement, only velocity, or both) and how it was
dirceted, the pendulum returns to the stable cquilibrium through a right-hand or left-hand
rotation. This is also one of the basic forms of the phasc plane, called the “saddle.™

a) b)

W
=\

Figure 4.5 (a) Unstable Equilibrinm and (b) Phase PPtane of Molions in its Vieinily, “the Saddle
Point™
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To see the whole phase plane of possible motions without damping, one needs to
combine the phase planes shown in Figure 4.4¢ (center) and in Figure 4.5b. (saddle), as
there are only two equilibria for the pendulum: the stable one, “straight down,” and the
unstable one, “straight-up.” Beeause the motion is rotational, the phase plane is expeeted
to repeat after 180 degrees (due to the symmetry of the oscillator). Note, that all the
trajectories in Figure 4.5b are curves, with exeeption of two straight lines (shown in
bold). These straight lines conneet 10 each other after 180 degrees, see Figure 4.6, making
a boundary separating the ellipses (actually ovals) and sine-like trajeetories above and
below the thiek lines. These sine-like curves correspond to a complete turn of the
equilibrium. Beeause there is no damping, this rotation is infinite.

Figure 4.6 Complete Phase Plare for Pendulum wilthoul Damping

This boundary trajectory is called the “separatrix,” for the cases when there are no
external excitations, and an “invariant manifold” for the more general case, when the
external exeitation is present.

The introduetion of damping will turn the ovals into spirals, but the separatrix still
separates the initial conditions leading to the immediate attraction to the stable
equilibrium from those that allow for at least one complete turn before the oscillator
“moves down along the spiral” (see Figure 4.7).

Figure 4.7 Complete Phase Plane for Pendulum with Dam ping

4.2.2 Mathematical Model of Surging and Surf-Riding

Following (Belenky, et ., 2008), consider the simplest model for surf-riding of a
relatively fast vessel in following regular waves. The origin of the coordinate system is
loeated on the wave crest:
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(m'f'mr.)'f(; + R + ;rj)_ I(c +§rn”)+ P;i'(;r.) =0 (4.12)

Here. m is the mass of the vesscl, m;, is longitudinal added mass; R 1s resistance in ealm
water, 7 is the efficient thrust in calm water (with thrust deduction included), ¢ 1s wave
celerity, and Fi is Froude-Krylov wave force. The symbol &g stands for the distance
between the wave crest and the center of gravity of the vessel and £ . is the velocity of
the ship relative to the wave eelerity Finally. # is the commanded number of revolutions
of the propeller— this is an independent parameter, related to the thrust delivered. This
equation also uscs the assumption that the encounter frequency o, is small (so the term
gontaining time - w.f can be dropped from the equation of the wave foree).

The Froude-Krylov force is a result of the integration of the incident wave

pressure in the absence of the ship over the surface of the hull (a derivation is available
from Belenky and Sevastianov, 2007):

F (E.)=—pgkl [ A, sIn(AE ;) — A, cos(AE )] (4.13)
[ YA (1A
A = j A, (x)-cos(hx)dx 1 A= IA.; (x)-sin(kx)dx (4.14)
054 05/
A (x)=2 I}‘(x.:)cxp(k:)dz (4.15)
dix}

Here. x, y and z are the coordinates of points on the surface of the hull. expressed in the
ship-fixed coordinate system; yfx, z/ is the half-breadth on a station with coordinate x at
the depth z; d(x) is draft of a station at longitudinal position x; & is the wave number: Z; is
the wave amplitude; and p is mass density of water. Calculation of the Froude-Krylov
wave foree is straightforward.

Surf-riding occurs as the equilibrium. [ts position could be found from equation
(4.12), assuming that & . =&. =0.

R(c)-T(c.n)+ F, . (E;)=0 (4.16)

Resistance Rfc) and thrust Tyc,n) are considered in the system of coordinates fixed
to the wave. So the force, Rfc), is the resistance required to tow a vessel with a speed
equal 10 wave celenty ¢. The value Tfc,m) 1s actually the efficient thrust that would be
ercated if a vessel sails with speed ¢, while the number of revolutions has been set to #.

As can be seen from equation (4.16), the wave force compensates for some of the
resistance, so the cquilihrium can be achicved for an engine setting less than that which
would be required to provide a speed, ¢, in calm water. That is why the balance hetween
effective thrust and resistance R(c)—7(c¢.n) is ncgative during the surt-riding.




Figure 4.8 shows thc wave force as a function of the distance from the wave crest
and the balance hetwcen resistance and thrust superimposed on the wave phase. An
intersection of the wave force and the balance between resistance and thrust constitutes
the solution of equation (4.16), which is the surf-riding equilibrium. It can be clearly
seen that there arc two equilibria on each wave: one closer to the wave crest and another
one closcr to the wave trough.
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Figure 4.8 Surf-Riding Equilibria for a 100 m High-speed Vessel, Wave Height 6 m, Wave length 200
m, Speed Setting 24 kts (Belenky, er al., 2008)

Engine-speed scttings definc how far the line of the resistance-thrust balance is
from the origin. The line of the resistance —thrust balance is equal to the difference of the
calm water resistance of the ship at the wave celerity and the thrust of the propulsor
behind the ship i.e. with the thrust deduction included. 1f these settings are too low, the
balance line will never interscct with the curve of the wave force, and equilibria and surf-
riding itsclf arc impossible in this case. An engine setting that makes the balance line
barcly touch the wave force curve is of special interest. Such a setting represents the
boundary above which the surf-riding becomes possible for the given wave., The calm
water speed corresponding to such a setting usually is referred to as the first critical spced
(in this case, it cquals 13.53 kts).

If the surf-riding cquilibria exist, one of them must be unstable and the other one
stable. Similar to the example with a pendulum considered in the subscction 4.2.1.
unstable equilibrium must separate stable equilibria.  Analysis of the stability of
equilibria (a brief description is given in (Belenky and Sevatianov, 2007) shows that the
cquilibrium in vicinity of thc wave crest is unstable and the equilibrium near the wave
trough is stable.

The next step of the analysis is to determine what types of motions in wavcs are
possible, using phasc plane analyses. This result is shown in Figure 4.9. Four equilibria
are shown in this figure. Two stable equilibria have stable-focus-type of the phase plane
surrounding them. They can be recognized by the sets of spirals, pulling the dynamical
system towards the stable equilibria, located at the points with coordinates (-150, 0} and
(50, 0). The stablc equilibria are separated by the unstable equilibria located at the points
with coordinates (5.0) and (-195,0).

The phase plane in the vicinity of the unstable equilibria is a saddle point (Figure
4.5). As it was noted before, one should pay particular attention to the two straight lines
of the saddle point, as thcy can be part of the boundary separating the initial conditions
corresponding to the different types of motions. In the case of the pendulum without
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damping (Figure 4.6), both these lines are part of the boundary between oscillatory
motion and rotation. In case of the damped pendulum (Figure 4.7), one line (with the
negative slope) belongs to the boundary.

The dynamical system deseribing surging and surf-riding is somewhat similar to
the damped pendulum: compare Figure 4.7 and Figure 4.9. The straight line of the saddle
point with the negative slope is a part of the boundary separating the initial conditions
leading to surf-riding and surging. As the origin of the coordinate system is located at
wave erest and moving with the wave celerity, the surging motion is shown as a sine-like
curve in this phase plane. The point moves backwards along this curve with the time
passed, because the average speed of the ship in surging mode is less than the wave
eelerity. so if the origin is moving with the wave, the ship in this coordinate system must
be moving backwards.

E - — &b T
300 '_:-'i(.-.m

Surging oL Steaiie

Figure 4.9 Phase Plane wilh Surging and Surl-Riding. Speed 22 Knols

Initial conditions corresponding to surging are loecated helow and between the
boundaries. The phase plane also helps to understand how surf-riding can occur when a
ship is sailing with the speed of 22 knots (in the considered example). Assume that the
ship is surging, therefore, the waves are overtaking her. The average speed i1s somewhere
around -6.4 m/s in the coordinate system of the Figure 4.9, meaning that the wave celerity
execeeds the ship speed at 6.4 m/s.

It can be also checked by a simple calculation, knowing that the wave length is
200 m and ship speed is 22 knots:

-
k=%=0.03lm'] to=.Jkg =0.5555"": T=2—n=l].3.v
Q)
2 (4.17)
c'=?=17.7 mis ; V=051444.- 2 kn=113m/s

So, in order to get into the surf-riding zone, the ship nceds to be suddenly
accelerated when she is at the particular spot on the wave. For example, if she is at the
wave through (100 m in Figure 4.9). she may need another 3 m/s to surf-ride (visually
from Figure 4.9). 1f she is around the wave erest, the speed addition is probably around
5 m/s, and so on.
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Practically speaking, it is difficult to imagine how the ship can be accelerated with
an additional of another 6 or 10 knots without changing speed settings. Therefore, in the
considered example, the surf-riding at 22 knots setting, while theoretically possible, is not
very likely,

Inereasing the engine setting up to 24 knots in calm water lcads to a dramatic
change in the phase plane (see Figure 4.10). The boundaries betwcen surging and surf-
riding are unfolded. There is no longer any possibility of surging and the boundaries
simply divide domains of attractions to the current or the next (or previous) wave.
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Figure 4,10 Phase Plane with Surf-Riding Only, Speed 24 knots

Somcwhcere between 22 and 24 knots, there is a speed that separates two distinct
topologies of the phase planes: when surf-riding is only a possibility and when it coexists
with surging. This speed (for the considered example, 23.3.knots} is commonly referred
to as the second critical speed. In nonlinear dynamies, this is regarded as a type of global
bifurcation, known as the hetcroclinic saddle connection (“homoelinic™ if one considers
the cylindrical nature of system’s phase space). The dynamics of surf-riding in
quartering seas (as well as the consequenee of broaching-to) due to this global bifurcation
was identificd and discussed in Spyrou (1996), on the basis of a surge-sway-yaw-roll
model which produced the necessary connection between surf-riding and broaching-to
behavior (see also Spyrou 2000).

To see the ecomplete picture of development of this global bifurcation, it is more
convenicnt to re-plot the phase plane in the cylindrical coordinate system, and the
position on the wave is presented as:

2
g, —> cos(%g”J (4.18)

"

where A is the length of the wave, while the velocity coordinate £, rcmains the same,

This transformation turns the sine-like trajectory of surging in Figure 4.9 into a closed
oval-like curve, similar to the oseillatory mode of the pendulum without damping. The
surf-riding cquilibria still appear as points.

This picture is shown in Figure 4.11, as a set of changing phase plancs, whilc the
speed setting is changed. The first phase plane contains only surging, while surf-riding is
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not possible. This is the situation shown in Figure 4.1, where surging force is insufficient
to accelerate the ship to the wave celerity. The origin of the coordinate system is still
located at the wave crest, but the periodic surging is seen as an oval duc to the coordinate
transformation (4.18).

The second phase plane in Figure 4.11 corresponds to the speed setting exactly at
the first critical speced. The wave surging force just touches the balance between the
thrust and resistance. This is a sort of degenerate case when the stable and unstable
equilibria are located at the same point. The appearance of this point, however, disturbs
the shape of the surging cycle: so it is no longer an oval.

The third phase plane in Figure 4.11 reflects the situation shown in Figure 4.2 and
Figure 4.9. Surging and surf-riding co-exist, but the possibility of surf-riding is
practically remote. The shape of the surging cycle, however is more disturbed as the
unstable equilibrium gets closer; despite the equilibrium being unstable, it is still capable
of accelerating the ship— note that the surging trajectory has a maximum near the saddle
point in Figure 4.9,

The fourth phase planc describes the “surf-riding only™ situation (shown in Figure
4.3 and Figure 4.10). All of the initial conditions lead to the surf-riding cquilibria and the
periodic surging cycle no longer cxists.

Periodie surging Surf-riding equilibria

At wave trough

At wave crest

&

F’,’A rl P‘n,_rf'_

Figure 4.11 Changing of Surging and Surf-riding Behavior with Increasing Speed Settings - Nominal
Froude Number (based on Spyrou 1996)

The examination of the dynamics of surging and surf-riding shows that the critcria
tor danger of surf-riding should be based on the second critical speced. or the second
threshold. It truly separates the situations where surf-riding is inevitable.




4.2.3 Direct Numerical Method for the Second Threshold

Phase plane analysis allows one to find the second threshold by calculation of the
boundaries and determining a speed when the boundary unfolds in the way shown in
Figure 4.10.

One point of this boundary is known. It is the unstable equilibrium. Strietly
speaking, the boundary consists of two phase trajectories, both of which take the system
towards the unstable equilibrium. These trajectories also can be seen in Figure 4.5b as
spanning through the 11 and 1V quadrant.

Because the trajectories lead toward the equilibria, in order to find these
trajeetories, the equation (4.12) should be integrated backwards in time. Numerieally it
does not make any difference. as a mechanical problem expressed in an ordinary
differential equation is completely reversible. Integration forward reveals the future,
while integration backwards in time reveals the past of the motion. The phase trajectories
found in such a way are unique. There are only two trajectories leading to the unstable
equilibrium (see Figure 4.5b).

What happens if the integration of equation (4.12) starts with initial conditions
which correspond exactly to the saddle point? The initial position on the wave
corresponds to the unstable equilibrium and the speed is zero. Numerical integration of
the equation forward in time takes the dynamical system from the cquilibrium. As the
equilibrium is unstable any disturbance takes the system away from it. The rounding
error plays a role of this initial disturbanece in the case of numerieal integration of the
equation (4.12). Depending on the sign of this error, the dynamical system ends up either
with surf-riding or surging, as in the ease of ¢o-existence shown in Figure 4.9. In the
case of surf-riding only, shown in Figure 4.10. the system goes to surf-riding either on
this or the next wave.

If the integration is done backwards in time, the system will move along the
boundary. Again, depending on the sign of the rounding error, the system “chooses™ the
boundary going through quadrant 11 or through quadrant IV. In order to avoid this
uneertainty, it makes sense to introduee an initial small disturbance in the direetion of the
boundary, as shown in Figure 4.12.

Qlart point for II quadrant

\//
Z .

Fignre 4.12 Initial Conditions for Calculation of the Boundary

Start point for IV quadrant 7

To caleulate the disturbance, equation (4.12) can be linearized. The linear
differential equation has a solution that is expressed with elementary functions. This
solution ean be used to set the initial point of integration,
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Lincarization of the equation (4.12) involves lincarization of the wave force at the
unstable equilibrium (see Figure 4.13) and the balance between thrust and resistance.

2000+ \N

Positions on the wave

1O+

_Wave Phase

1) 100 30
' / 1 |' ’ Cee MM

- Balance between
Thrust and resistance

Wave force linearized at
unstable equilibrium

Unstable Wave Force
Equilibrium \ Stable
Equilibrium
=2000 1

Fignre 4.13 Linearization of Surging Wave Force a1 Unstable Surf-riding Equilibrinm

The linearized wave surging foree 1s expressed as
Fu (€)= Ky (& + &) (4.19)

Where £ 18 a location of unstable equilibrium, and Ky is the slope coeflicient:

‘tzf, zé(.‘!

The inTluence of the surging speed on thrust can be neglected in the first expansion. Also
as the surging speed can be assumed small in comparison with wave celerity, resistanee
can be linearized:

R (c+ i(, )=K, (é.‘(,: +4) 4.21)

Kz 1s the slope coetficient for the resistance

. _dR(E,)
K, =—=¢. (4.22)
Y&, |Ee=c |

Then, the surging equation, hinearized near the unstable equilibrium, 1s ¢xpressed as:
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(m+ ’”r)'gu s KRI.E..:G + Ky, & =T(e,m)— R(c) - Ky, & (4.23)

The value in the right hand side is a constant, depending on the wave
characteristics and the thrust settings. Re-writing equation (4.23) into standard form
yields:

E; +20,8; —ky, & =b, (4.24)

Here b, is a constant expressing that the equation has been linearized at the unstable
equilibrium:

_ T(c,m)—R(c)- Kn'f.E:ﬁt'
(m+m )

o,

(4.25)

The expression for the “repelling” eoefficient &y accounts for its negative value (it is
always the casc for the unstable equilibrium):

o (m+m) i
Finally &, plays a role of the damping coefticient:
K
- (4.27)

&= 2(m+m,)

The lincarized equation (4.25) deseribes the motion near the unstable equilibrium.
Its phase portrait is a saddle point. It is very similar to the equation (4.11); the only
difference is that it contains a damping term and a eonstant.

The objective of all these derivations is to determine the position of the starting
points for integration, as shown in Figure 4.12. Equations for the straight lines leading to
and from the unstable equilibrium ean be found using the characteristic equation of the
linear differential equation

A +28 -k, =0 (4.28)
Two solutions of the charaeteristic equation, the eigenvalues, are expressed as:

Ay =—8, :t\fﬁf +k,, (4.29)
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As it is well known from the linear theory of oscillators (see, for example
Andronov, ef al. 1966), the straight line trajectorics of the saddle point can be expressed
using the cigenvalues, see Figurc 4.14.

Start point for Il quadrant

Start point for 1V quadrant

Figure 4.14 On the Calculation of the Initial Conditions for Calculation of the Boundary

Once the equation for the straight line trajcctories of the saddle point have been
defined, sctting the initial points for the integration is trivial, as even a small disturbance
from the unstable cquilibrium (like 0.1 m) will serve the purposc. Integration of the
cquation (4.12) backwards in time does not produce any difficultics. with the exception
of setting the end point.

Calculations of the boundary are repeated for a series of thrust settings, until a
critical one, corresponding to unfolding of the boundary, is found. As it was shown
above, the nominal Froude number corresponding to the unfolding of the boundary is the
second threshold.

4.2.4 Approximate Method for the Second Threshold

The direct numerical method for calculation of the second threshold has a solid
technical background. but may require calculations that may be too cumbersome, cven
for a second level of vulnerability check.

Instcad, an approximatc method, namely Melnikov's method. can present a
practical solution (Spyrou 2006). The main idea is based on the fact that the boundarics
touch each other when the speed/thrust settings correspond to the sccond threshold.
While it is not possible to catch this exact instant, the tendency can be very clearly seen
in Figurc 4.15.
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Figure 4.15 Change of Localion of the Boundary while Approaehing the 2" Threshold

Melnikov’'s function is defined as the distance between the two boundaries.
Therefore, the instant of achicving the second threshold corresponds to the zero-valuc of
Melnikov’s function.

A closcd form expression of Melnikov’s function is available for a dynamical
system that can bc approximated as a perturbation from the Hamiltonian system (here it
mean autonomos dynamieal system e.g. pendulum without an external forcing).
Praetieally, it mecans that the system should be lightly damped, as a Hamiltonian system
includes nonlincarity in restoring. As a result, Melnikov’s method. in eontrast with other
perturbation mcthods, does require small nonlinearity in restoring to be applicable
(Guckenhcimer & Holms, 1983).

To apply Melnikov's method, thrust and resistance need to be expressed with
elementary funetions, The solution available from Spyrou (2006) uses a polynomial
approximation for thrust and resistance:

R =nVs + 1V +rVy (4.30)
TWem)=t0° +1Von+ 1,V (4.31)

Here ry. ry _ry are polynomial coefticients for resistance that can be evaluated with
standard regression mcthods.

The coefficicnts To. Ty, 13 for thrust are defined as

v, =c,(l-1, JpD* (4.32)
T, =¢(1-1, fi-w, oD’ (4.33)
v, =¢,(1-1, 1-w, FpD? (4.34)

Here 1, is the coefficient for thrust deduction, while w), is the wake fraction coefTicient.
Both cocfficients are evaluated for calm water. D is the propcller diametcr and p is mass

103




density of water. Coefficients ¢y, ¢;, ¢2 came from polynomial presentation of the
coefticient of thrust Ky

K, =cy+cJ+c,J’ (4.35)
Where ./ 1s the advance ratio
Voll—w
J= -—‘L—"-) (4.36)
nhD

Then the balance between the resistance and thrust in the equation (4.12) can be
expressed as:

Rc+&,)-T(c+&,.m)=

. - . (4.37)
A (e.n)E, +4,(c), +A. &, + R(c)-T(c.n)
Here:
Aflc,n) = 3rc’ + 2y = Yo+ 7 — TR (4.38)
A, (c)=3nec+2(r,—1,) (4.39)
A =m (4.40})

To apply Melnikov's method. the equation (4.12) should be transformed into the
non-dimensional form:

X"+ px'+ pox + px” +sinx = L (4.41)
q
Here:
x=kE, (4.42)
k is the wave number (spatial frequency)
k - .4}.'“.
di==—s= (4.43)
m+n

Apy is amplitude of surging wave foree:
Ay, = PEKC 4 A (4.44)

Note, that the cosine component in formula (4.13) is neglected, as it is small in
comparison with the sine component. especially for long waves.

Coefticients g, pa. p3 represent the ehange of resistanee and thrust:

A(c,n)
= )= .
no=pn W (4.45)
_ Aye)
P k‘ (n"’ +' "-_’.r ) (4.46)
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A.‘ A Fw

(Jkim+ ", ))1

Py = (4.47)

The coefficient » (without any index) refleets the difference between resistanee and thrust
at the wave celerity

k(T (c.n) = R(c))

r(n)=
) (m+m ) (i)
Finally, equation (4.41) is written in the non-dimensional time, expressed as
F= \/(7 t (4.49)

The Mcelmkov’s funetion for the equation (4.41) and given speed settings is
expressed as (from Spyrou, 2006):

4 ke
M(n)=—@——pl(n)+2p,——p‘ (4.50)
g 7 In

Note that all the coefticients in the formula (4.50) are dependent of the elements
of wave: amplitude, wave number, and wave eelerity.

The number of revolutions eorresponding to the second threshold #7; ean be
found from (4.50}), by satisfying the econdition:

M(n,,)=0 (4.51)

The expression (4.51) 1s a nonlincar algebraic equation and ean be solved with
any appropriate numerical method.

4.2.5 Sample Calculations

This subseetion presents sample ealeulations including the evaluation of the
second threshold with the Melnikov’s method, using equation (4.51) and the direet
numerical method deseribed in the subsection 4.2.3. The ealeulations were performed for
the sample population of 17 ships.

Resistance in ealm water was estimated using the method developed by Holtrop
(1984). While this estimate may be not very aceurate, nevertheless it seems to be
acceptable for the sample vulnerability cheek: it is enough if the resistance estimate
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captures just the principle features of the resistance curve. Then the resistance curve was
approximated with the third-order polynomial (4.30). The result for the Fishtng Vessel |
(I'TTC ship A2) is shown in Figure 4.16.

Thrust was modeled with the open-water propeller data by Oosterveld and van
Oossanen (1975). The thrust coefficient curve was approximated with the second-order
polynomial (4.31). The result for the Fishing Vessel 1 (ITTC Ship 2) is shown in Figure
4,17, The interaction between the propeller and the hull was estimated using data from
Holtrop (1984)

400 "R. KN
00 T o, _ ,f'
QOO Resistance estimale (Holtrop method) /
Third-order polynomial approximation @
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Figure 4.16 Approximaition of Calm Water Resistance Curve with the Third-Order Polynomial for
Fishing Vessel 1 (ITTC A2}
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Figure 4.17 Approximation of Thrust Coefficient with the Seeond-Order Polynomial for Fishing
Vessel 1 (ITTC A2)

For all the sample caleulations. the surging added mass acted as 10% of the mass
of the ship. The wave length was taken equal to the ship length while the steepness was
taken as 1/15. Figure 4.18 shows Melnikov's funetion for the Fishing Vessel 1 (1TTC
Ship A2).
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Figure 4,18 Melnikov’s Funetion for Fishing Vessel 1 (1ITTC A2)

The number of revolutions corresponding to the second threshold was calculated
for each sample vessel using equation (4.51). Figure 4.19(a) shows boundaries of surf-
riding modc (stable invariant manifold) calculated for this number of revolution (the
sample ship is Fishing Vessel 1). The topology of the phasc plane is similar to the onc
shown in Figurc 4.15(c) and corresponds to co-existence of surging and surf-riding.
However, the shape of the curve hints that the second threshold is near, as the flexion of
the curve becomes sharp around 35 m in Figure 4.19(a).

A slight change of the number of revolutions leads to a dramatic change of the
shape of the boundary shown in Figure 4.19(b). This is true for the second threshold (the
calculation of the number of revolutions was performed up to the third significant digit).
The results of these calculations for the entire sample population of ships are summarized
in Table 4.

a) b)
1578 m/s n=1.76 rev/s 157 £ m/s n=1.79 rev/s
V=1092 kts - =11.02 kts
104 Fn=0306 104 Fn=0.308
5
ﬁ L g S‘n
3 | EG.m k I Sg.m
40 20 uW 40 60 -0 20 0 50 " b
o | -5l

Figure 4.19 Stable Invariant Manifold (a) Corresponding to the Zero of Melnikov’s Funetion (b)
Corresponding to the Second Threshold to the Third Signifieant Digit

As can be seen from Table 4, the true values of the number of revolutions, as well
as corresponding figures for the commanded speed and nominal Froude number, are
slightly higher that the values estimated using Melnikov’s method. These differences are
also shown in Figure 4.20 and Figure 4.21.

The difference between the results of Melnikov’s method and the direct numerical
computation gencrally is small. Based on the sample population of ships, it can be
concluded that Melnikov’s method is slightly more conservative than the direct numerical
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method, while being much simpler and less expensive in terms of the necessary
calculations.
Table 4 Results of Sample Caleulation for the Second Threshold

) Wave Melnikov’s Method Direct Calculations
Ship Type
,m | hym nl/s | Vs kts Fn n, /s | Vs, kts | Fn

Fishing Vessel 2 21.56 | 144 3131 8.54 0.302 3.32 8.56 | 0.303
Fishing Vessel |
(ITTC A2) 34.5 2.30 1.76 10.92 0.306 1.79 11.02 | 0.308
General Cargo 1 (860) 121.9 | 8.13 3.35 19.91 0.296 337 1998 | 0.297
RoPax 137 9.13 3.87 20.42 0.287 3.88 20.46 | 0.287
Naval Combatant |
(ONR FL) 150 10.00 | 3.24 21.09 0.283 3.24 21.11 | 0.283
Naval Combatant 2
(ONR TH) 150 10.00 | 3.23 21.09 0.283 3.24 21.11 | 0.283
General Cargo 2 (C4) 161.2 | 10.75 | 3.91 21.33 0.276 3.93 2142 | 0277
Bulk Carrier 2 145 9.67 308 2341 0.319 3.99 2343 | 0320
Containership 5 (C11) 262 17.47 1.82 27.99 0.284 1.83 28.07 | 0.285
Passenger Ship 2764 | 1843 | 342 28.10 0.278 343 28.17 | 0.278
Containership 4 2832 | 18.88 | 2.15 29.20 0.285 216 | 2933 | 0.286
LNG Carrier 26781 17.86 | 2.77 30.17 0.303 2,78 30.22 | 0.303
Containership | 3226 | 21.50 | 2.00 30.59 0.280 2.01 30.64 | 0.280
Containership 3 330 | 22.00 | 2.07 32.13 0.291 2.08 32.20 | 0291
Bulk Carrier 275 1833 | 3.03 3225 0.320 3.03 3227 | 0.320
Containership 2 376 | 25.06 | 2.03 33.38 0.283 2.04 3345 | 0283
Tanker 320 | 2134 | 445 34.40 0316 4.47 34.54 { 0.317

0.16

AV, kts
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Figure 4.20 Difference in Terms of Nominal Speed (kts) between the Melnikov’s Method and Direet
Caleulation for the Seeond Threshold
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Figure 4.21 Difference in Terms of Nominal Froude Number between the Melnikov’s Method and
Direct Calculation for the Second Threshold

4.3 Level 1 Vulnerability Criteria

4.3.1 Second Threshold as a Background for the Level 1 Criterion
The document MCS.1/Circ. 1228 uses the following formula as an indicator of
possible danger of surf-riding and following broaching-to.

Ve 2 1.8VZ , kts
cos(180 — o)

(4.52)
Froude number yields:

Where L is length of the ship and « is a wave heading, 0 being head waves.
Assuming following waves (o =180°) and transforming (4.52) into the form of

Fnalﬁ%ﬂ‘ﬁ = 0296~0.3
g

(4.53)
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Annex 3 of the document SLF 53/INF.10 states that this value 1s relatcd with the
nominal Froude number corresponding to the second threshold. As it can be seen from
Table 4, values of the nominal Froude number are around 0.3. The average Froude
number over the considered sample population cquals 0.294,

Generally, it is a known fact and can be scen from Table 4, that the Froudc
number corresponding to the second threshold is varying in a relatively narrow range:
from 0.277 to 0.320.

At the same time, all of the calculations in Table 4 were made for a wave with the
length equal to ship length and wave steepness of 1/15. As the length of the ships in
sample population varied significantly, the likelihood to encounter such a wave varics
significantly from ship to ship. Therefore, the sample ships were not evaluated in
equivalent conditions.

Surf-riding and broaching-to is caused by stccp waves. The probability of
encountering a long, steep wave is less than the probability of encountering a short and
stcep wave. Therefore, accepting Fn=0.3 as an “across-thc-board” criterion and standard
may unnecessarily penalize large ships. Thus, the size of a ship (at least its length) necds
to be included in the criterion.

4.3.2 Relation between the Second Threshold and Steepness

To account for ship size, the irregularity of waves nceds to be brought into
consideration. Then the likelihood of encountering a wave eapablc of causing surf-riding
can be quantified with a probability using a known distribution of wave charactcristics.

A reference ship is then chosen. The reference probability of surf-riding can be
cvaluated for such a vessel. Then, a wave steepness can be found that leads to the
probability of surf-riding that equals the reference probability. This will lead to the
boundary for Froude number that depends on ship length.

The first step is to find the dependence of nominal Froude number corrcsponding
to the second threshold on wavc steepness. The most straightforward way to do this is to
perform a calculation of the wave surging force, estimate resistance and thrust, and then
apply Melnikov’s method, as it was deseribed in subsections 4.2.3 and 4.2.5. However,
these calculations cannot be required for the first level of vulnerability check, as they arc
too complex for the first level. Therefore, the criterion should be based on pre-calculated
data and approximations cannot bc avoided.

Table 5 contains the results of the calculation of the nominal Froude number,
corresponding to the second threshold, carried out for the sample ship population for a
scries of wave steepness. Mclnikov’s method was used. Figure 4.22 represcnts a
graphical depiction of these results.

As it can be clearly seen from Figure 4.22, the values of Froude number change
almost equidistantly with thc wave steepness. Also the variation of the values of Froudc
numbers is not that significant, considering the diversity of the sample ship population.
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Table 5 Seeond-Threshold Froude Number, as a Funetion of Wave Steepncess

Fishing Vessel 2 £=21.56m

Steepness A/h

ML A, m 40 30 24 22 20 18 16 14 12 10 8
0.750 | 16.170 0330 1 0327 [ 0325 | 0324 | 0323 1 0322 | 0.321 ] 0.319 | 0.317 | 0.314 | 0.311
1.000 | 21.560 0338 10329 [ 0.321 [ 0318 | 0.314 | 0.310 | 0.305 | 0.299 | 0.292 | 0.283 | 0.27]
1.250 | 26.950 0.356 | 0.344 | 0.333 { 0.328 | 0.323 | 0.317 | 0.310 | 0.302 | 0.293 | 0.281 | 0.266
1.500 | 32.340 0.377 | 0.361 | 0.348 [ 0.343 | 0.337 ] 0.330 | 0.322 [ 0.313 | 0.301 | 0.288 | 0.270
1.750 | 37.730 0.398 | 0.381 | 0.366 | 0360 | 0.353 | 0.346 | 0.337 | 0.326 | 0.313 | 0.298 | 0.279
2.000 | 43,120 0.419 | 0,400 | 0.383 | 0.377 | 0.369 | 0.361 0.352 | 0.341 | 0.328 | 0.313 | 0.290

Fishing Vessel 1 (ITTC A2) £=34.500 m

Steepness A/h

ML A, m 40 30 24 22 20 18 16 14 12 10 8
0.750 | 25.880 0.333 ] 0.331 | 0.329 | 0.328 | 0.327 | 0.326 | 0.325 | 0.324 | 0.322 | 0.320 | 0.317
1.000 34.500 0.339 | 0.330 | 0.323 | 0.320 | 0.316 | 0.313 0.308 | 0.303 | 0.297 | 0.289 | 0,279
1.250 | 43.130 0.358 ] 0.346 | 0.336 [ 0332 | 0.327 [ 0.322 | 0316 | 0.310 | 0.302 | 0.293 | 0.282
1.500 [ 51,750 0.379 | 0.365 ] 0.353 | 0.348 | 0.343 [ 0.337 | 0.331 { 0.323 | 0.315 ] 0.305 | 0.292
1.750 | 60.380 0.401 | 0.385 | 0.372 | 0.366 | 0.360 | 0.354 0.347 | 0.339 | 0.330 | 0.319 | 0.305
2,000 | 69.000 0.422 | 0.405 | 0.390 | 0.385 | 0.379 | 0.372 | 0364 | 0.356 | 0.345 | 0.334 | 0.319

General Cargo | (S60) L=121.1 m

Steepness #

WL A, m 40 30 24 22 20 18 16 14 12 10 8
0,750 | 91.440 0.329 | 0.326 | 0.324 | 0.323 | 0.322 | 0.320 0319 | 0.317 | 0.315 | 0.312 ] 0.308
1.000 | 121.500 0.334 | 0.325 | 0.316 { 0.313 | 0.309 | 0.305 | 0299 | 0.293 | 0.286 | 0.277 | 0.264
1.250 | 152.400 0.352 | 0.339 | 0,328 { 0.323 | 0.318 { 0.312 ] 0.304 | 0.296 | 0.288 | 0.275 | 0.260
1.500 [ 182.900 0.373 [ 0.357 | 0.343 [ 0.338 | 0.332 { 0.325 ] 0.315 | 0307 | 0.296 | 0.283 | 0.266
1.750 | 213.400 0.394 | 0.376 | 0.360 | 0.354 | 0.347 | 0.340 0.331 | 0.319 1 0.308 | 0.296 | 0.276
2.000 | 243.800 0.415 1 0.395 ] 0379 | 0.371 | 0.364 | 0.356 | 0.346 | 0.335 | 0.32]1 | 0.306 | 0.289

RoPax 1~137m

Steepness &k B

ML A, m 40 30 24 22 20 18 16 14 12 10 8
0.750 | 102.800 0.311 ] 0.306 | 0.301 | 0,300 | 0.297 | 0.295 | 0.292 | 0.288 | 0.284 | 0.279 | 0.271
1.000 | 137.000 0.327 | 0.317 | 0.308 | 0.304 | 0.300 | 0.295 | 0290 | 0.284 | 0.276 | 0.266 | 0.253
1.250 | 171.300 0.347 1 0.334 ] 0.322 [ 0318 | 0.312 [ 0.306 | 0.299 | 0.29]1 | 0.282 | 0.269 | 0.255
1.500 | 205.500 0.369 | 0.353 | 0.340 | 0.334 | 0.328 | 0.321 0.313 | 0.304 | 0.293 | 0.281 | 0.263
1.750 | 239.800 0.392 1 0.374 [ 0.358 | 0.352 | 0.346 | 0.338 | 0.329 | 0.318 | 0.307 | 0.295 | 0.275
2.000 | 274.000 0414 | 0.394 | 0.377 | 0.370 | 0.363 | 0.355 0.346 | 0.335 | 0.321 | 0.307 | 0.289

Naval Combatant | & 2 (ONR FL & T1) L=150 m

Steepness Ak

ML A, m 40 30 24 22 20 18 16 14 12 10 8
0.750 | 112.500 0.313 | 0.308 | 0.303 | 0.302 | 0.299 | 0.297 | 0.294 | 0.291 | 0.287 | 0.281 | 0.274
1000 | 150,000 0326 | 0,315 ]| 0306 | 0.302 | 0.297 | 0.292 | 0.286 | 0.279 | 0.271 | 0.260 [ 0.246
1.250 | 187.500 0.345 1 0.330 | 0.317 [ 0.312 | 0.306 | 0300 | 0.292 | 0.283 | 0.271 | 0.258 | 0.240
1.500 | 225.000 0.366 | 0.348 [ 0,333 | 0.327 | 0.320 | 0,312 | 0.303 | 0.292 | 0.279 | 0.264 | 0.244
1.750 | 262.500 0.387 | 0.367 | 0.350 | 0.344 | 0.336 | 0.328 | 0.316 | 0.304 | 0.290 | 0.273 | 0.252
2.000 | 300.000 0.408 | 0.386 | 0.368 | 0.360 | 0.352 | 0.342 | 0.332 | 0.319 | 0.303 | 0.285 | 0.263
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Table § Second-Threshold Froude Number, as a Function of Wave Steepness (Cont.)

General Cargo 2{(C4) £=161.2 m

Steepness A/h
ML A, m 40 30 24 22 20 18 16 14 12 10 8
0.750 ] 120.900 0.304 [ 0.297 [ 0292 | 0289 [ 0.287 | 0.284 { 0.280 | 0.276 | 0.270 | 0.264 | 0.255
1.000 | 161.200 0.321 ] 0.310 1 0.300 ] 0.296 | 0.292 | 0.286 | 0.279 | 0.272 | 0.264 | 0.254 | 0.239
1.250 | 201.600 0.343 1 0327 1 0315 1 0310 | 0.304 | 0.298 | 0.290 | 0.280 | 0.269 | 0.258 | 0.239
1.500 | 241.900 0.365 | 0.348 1 0.332 | 0.326 | 0.320 | 0:312 | 0.303 | 0.293 | 0.280 | 0.265 | 0.247
1.750 | 282.200 0.387 [ 0.368 | 0.351 | 0.345 | 0.336 | 0.328 | 0318 ) 0.307 | 0.292 | 0.277 | 0.259
2.000 | 322.500 0.409 | 0.388 | 0.370 | 0.363 | 0.354 | 0.344 | 0.334 | 0.322 | 0.308 | 0.289 | 0.273
Bulk Carrier2 L=145m
Steepness 2/h
AL A, m 40 30 24 22 20 1¥ 16 14 12 10 8
0.750 | 108.800 0.316 [ 0.312 | 0.308 | 0.306 | 0.304 | 0.302 | 0.299 | 0.296 | 0.293 | (.288 | 0.281
1.000 | 145.000 0.349 | 0.342 ] 0.335 ] 0.332 | 0.329 | 0.326 | 0.322 | 0.317 | 0.311 | 0.303 | 0.292
1.250 | 181.300 0.362 | 0.350 | 0.340 | 0.336 [ 0.331 | 0.325 | 0.319 | 0.311 | 0.302 | 0.289 | 0.274
1.500 | 217.500 0.380 [ 0.365 | (h352 | 0.348 | 0.341 | 0334} 0.326 | 0.317 | 0.306 | 0.291 | 0.274
1.750 | 253.800 0.400 | 0.382 | 0.367 | 0.361 [ 0.355 | 0.347 | 0338 | 0327 | 0315 | 0.298 | 0.281
2.000 | 290.000 0.420 | 0.400 | 0.384 | 0.377 [ 0.369 | 0362 | 0.352 | 0.340 | 0.327 | 0.308 | 0.2%0
Containership 5 (C11) 1=262 m
Steepness A
ML A, m 40 30 24 22 20 18 16 14 12 10 8
0.750 | 196.500 0.310 | 0.305 ] 0.300 1 0.298 [ 0.296 | 0.293 | 0.290 | 0.287 | 0.282 | 0.276 | 0.269
1.000 | 262.000 0.326 | 0.316 ] 0.306 | 0.303 [ 0.298 | 0.293 | 0.287 | 0.281 | 0.272 | 0.262 | 0.249
1.250 | 327.500 0.346 | 0.332 | 0.320 ] 0.315 [ 0.310 | 0.303 | 0.295 | 0.287 | 0.277 | 0.264 | 0.248
1.500 | 393.000 0.368 | 0.351 | 0.337 ] 0.331 [ 0.325 | 0.318 | 0.309 | 0.298 | 0.287 | 0.274 | 0.255
1.750 | 458.500 0.390 | 0.371 | 0.355 | 0.348 | 0.341 | 0.333 | 0.324 | 0.313 | 0.300 | 0.285 ] 0.266
2.000 | 524.000 0412 | 0.391 ] 0.374 | 0.367 | 0.358 | 0.350 0.340 | 0.328 | 0.313 | 0.298 | 0.279
Passenger Ship L=276.4 m
Stecpness A/h
ML A, m 40 30 24 22 20 I8 16 14 12, 10 8
0.750 | 207.300 0.307 | 0.301 ] 0.296 | 0.293 [ 0.291 | 0.288 0.285 | 0.281 | 0.276 § 0.270 | 0.262
1.000 | 276.400 0322 |1 0.311 ] 0.300 ] 0.297 [ 0.293 | 0.287 | 0.281 | 0.274 | 0.266 | 0.255 | 0.241
1.250 | 345.500 0.342 | 0.327 ] 0.315 | 0.310 | 0.304 | 0.296 0.289 | 0.281 | 0.272 | 0.257 | 0.241
1.500 | 414.600 0.364 | 0.346 | 0332 ] 0.326 | 0.320 | 0312 | 0.302 | 0.292 | 0.281 | 0.267 | 0.248
1.750 | 483.800 0.386 | 0.367 | 0.350 ] 0.344 [ 0.336 | 0.328 | 0.318 | 0.306 | 0.294 | 0.278 | 0.260
2.000 | 552.900 0.408 | 0.387 | 0.369 | 0.361 | 0.353 | 0.344 | 0.334] 0.322 | 0.307 | 0.292 | 0.274
LNG Carrier  [=267.8 m
Steepness 2/h
ML A, m 40 30 24 22 20 18 16 14 12 10 8
0.750 | 200.900 0.328 1 0.325 10.323 | 0.322 1 0.321 j 0.320 | 0318 | 0316 | 0.314 | 0.311 | 0.307
1.000 | 267.800 0.338 ] 0.329 | 0.321 [ 0318 } 0.314 ] 0.310 | 0.306 | 0.300 | 0.293 | 0.284 | 0.273
1.250 | 334.800 0.354 } 0.341 | 0.331 | 0.326 | 0.321 | 0.316 | 0.309 | 0.301 | 0.292 | 0.28] | 0.266
1.500 | 401.800 0.374 [ 0.359 | 0.346 [ 0.340 | 0.335 ] 0.328 | 0321 | 0.312 | 0.301 | 0.289 | 0.272
1.750 | 468.700 0.395 | 0,378 [ 0.363 | 0.357 | 0.350 | 0.343 | 0.335 | 0.326 | 0.314 | 0.301 | 0.282
2.000 | 535.700 0.416 | 0.397 [ 0.380 | 0.374 | 0.367 | 0359 | 0.350 | 0.340 | 0.329 | 0.314 | .294
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Table 5 Seeond-Threshold Froude Number, as a Function of Wave Steepness (Cont.)

Conlainership 2 L=376 m

Sleepness A
ML A.m 40 30 24 22 20 18 16 14 12 10 8

0.750 | 282.000 0.308 [ 0.303 | 0.298 ] 0.296 | 0.293 | 0.291 0.287 [ 0.284 [ 0.279 | 0.273 | 0.265
1.000 | 376.000 0.325 [ 0.315 | 0305 j 0.301 | 0297 | 0.292 | 0.286 | 0.279 | 0.271 | 0.259 | (.246

1.250 | 470.000 0.346 | 0.331 | 0.319 ) 0.314 | 0.308 | 0.301 0.294 | 0.285 | 0.275 | 0.261 | 0.245

1.500 | 564.000 0.367 [ 0.350 | 0.336 | 0.330 | 0.323 | 0.315 | 0.306 | 0.297 | 0.285 | (.269 | 0.252
1.750 | 658.000 0.389 | 0.370 | 0.354 | 0347 | 0.340 | 0.332 | 0.321 | 0.310 | 0.298 | 0.282 | (.262

2.000 | 752.000 0.410 [ 0.389 | 0.372 ) 0.365 | 0.357 | 0.348 | 0.338 | 0.324 | 0311 | 0.295 | 0.273
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Figure 4.22 Seeond-Threshold Froude Number, as a Funelion of Wave Steepness

As it can be seen from Table 5, the lowest values and curves in Figure 4.22 do not
necessarily belong to ships with known vulnerability for surf-riding and broaching-to.
Thercfore, it makes sense to use the average over the ship population for cach stcepness
value rather than the lowest curve. The average curve is approximated as

Fn(h/h)=0.2324 ¥L/h—0.07364 VL/h (4.54)

where A is wave length and 4 is thc wave height. The approximate curve is plotted
against the points in Figure 4.23.

For evaluation of probability, it is eonvenient to use the inverse funetion of (4.54).
However, instead of transforming (4.54) into a cubic equation (4.53) and then solving it,
it is easicr to fit another approximation to the alrcady inversed data:

h/2=0.0310 Fn™’ +0.06226 (4.55)

Note that the stiffness value is now cxpressed as h/A. Points and the curve arc shown in
Figure 4.24.
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Figure 4.23 Approximation of Froude Number, as a Function of Steepness
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Figure 4.24 Approximation of Wave Steepness as a Function of the Nominal Froude Number,
Corresponding to the Seeond Threshold (Averaged over the Sample Ship Population)

4.3.3 Criterion Accounting for Ship Length

The probability of encountering a wave equal to the ship length and capable of
causing surf-riding becomes a function of Froude number

we | e
P(Fn) = j_f alk===da

a_ (¥n)

Here a,, is critical amplitude that is determined from (4.55):

a,, =0.5L(0.0310 Fn™ +0.06226)




The conditional distribution density f(alk} can be found using formulae (3.51) and
(3.117):

fla.k)
k e
flalh 0 (4.58)

The formula (4.56) retleets the known fact that the inerease of the speed leads to
an increase of the probability of surf-riding. As it can be seen from Figure 4.24,
increasing the Froude number reduces the steepness; this leads to a deercase of the
eritical amplitude (4.57) and to an increase of range of integration in (4.56). Since the
conditional PDF (4.58) is always positive, the integral in (4.56) must increase with the
increase of the Froude number.

To avoid any complexity unnecessary for the first level vulnerability check,
N. Umeda proposed to limit the consideration of wave lengths to only those cqual to the
ship length. While changing the values of the probabilitics, this assumption should not
have much effect on the final results, as here the prohabilities are only used for reference.

L7
P(H,.T,.L.Fn)= j f(avk=2Tana (4.59)

a, (I'n)

Here, the probability is expressed as a funetion of significant wave height Hs and mean
period of zero-crossing 77, as the conditional distribution (4.58) depends on the spectrum.
A Bretshneider spectrum was assumed here, and it makes the reference probahility
dependent on these two parameters defining the speetrum.

N. Umeda also proposed to average the probability over a wave scatter diagram,
like the one in IACS Recommendation 34, This is a very general approach. where the
probability of encountering a certain weather eondition is also econsidered.

]
P(L.Fny=—>> P, (H:.T,)N(H,.T,) (4.60)

Yrw Hy 1

Here N(Hs.T7) is the number of observations of a sea statc with significant wave height
Hg and mean period of zero-crossing 7, while N7, is the total observations available.

Formula (4.60) expresses a probability (averaged over annual storm statistics) of
encountering a wave that is equal to the length of the ship and capable of causing surf-
riding to a ship heading with speeified Froude number. While this value cannot be
interpreted as the actual probability of surf-riding, it still can be used as a mcasure of
danger of surf-riding., depending on speed and length. Figure 4.25 shows a graphical
representation of formula (4.60).
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Figure 4.25 Probability of Encounter of a Wave Capable of Causing Surf-riding for as a Function of
Ship Length for Different Nominal Froude Nnmbers

As can be seen from Figure 4.25, the probability deereases with an increase of the
length and increases with the incrcase of Froude number. The obscrved tendency is
consistent with opcrational cxpericnce. The danger of surf-riding is lcss for longer ships
and inereases with inercasing speed. (For example, a ship with a length of 300 meters
travelling at 35 knots has a Froude number of 0.332.)

To evaluate the reference probability, a reference ship length and Froude number
should be assumed. Further calculations were performed for the referenee values L=80 m
and Fn=0.28, subject for further scrutiny and additional discussions. The reference
probability is calculated below and shown in Figure 4.25.

P, =P(L=80,Fn=027)=78-10" e

Introduction of the reference probability allows for the expression of the Froude
number as a function of length:

Fa(Ly=9(L.P=P,) (4.62)

Here Q) is an inverse function for probability (4.60).

Figure 4.26 presents the results of the calculation of the formula (4.62), depicted
as circles, as well as the lincar regression through thesc points:

Fn(L)=0.0000181-L+0.282 (4.63)

The formula (4.63) rclates Froude number with the ship length under the
condition of cncountering a wave with the length equal to ship length and steep enough to
cause surf-riding. This line has a positive slope, meaning that a larger vessel would need
to sail with higher specd, in order to keep the same probability of encounter with
dangerous wave. This approach can be used to “give a credit” for larger ships, in terms
of the likelihood of experiencing surf-riding and broaching-to.
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Figure 4.26 Fronde Number as a Function of Length, Under the Condition of the Egqnivalent
Prabability of Encountering a Wave Capable of Causing Surf-Riding

0.27

If one aceepts Fn=0.28 as a standard for the level | vulnerability eriterion for a
ship with length equal or less 80 m, then the entire eriterion can be formulated as:

Fn>028 if L<80m

Frn>00000181-L+0.282 if L>80m i

The obvious disadvantage of this eriterion is that it is based on an empirical
relation between the Froude number corresponding to the seeond threshold and the
steepness of wave, expressed in formulac (4.54), (4.55) and (4.57). Because these
formulae are based on a specifie ship population, it may change if tried on another, or
larger, population of ships. At the same time, the difterenee between these ships,
however noticeable, is not dramatic. The advantage of this approach is that it resulted in
a simple formula and its satety level may be related with the reference probability.

Alternatively, the doeument SLLF-53/3/8 proposes an even simpler formula:
Fn203 if L<200m (4.65)

This formula (4.65) expresses the same idea that the level 1 vulnerability criteria
for surf-riding should inelude ship length as one of the parameters.

4.4 Level 2 Vulnerability Criteria

Similar to pure loss of stability, the phenomenon of surf-riding is a single-wave
event. Despite the fact that the process of attraction to a surf-riding equilibrium takes
some time, the appearance of equilibria is instantaneous. The vulnerability to surf-riding
can be measured by the percentage of waves capable of generating surf-riding equilibria.
The irregular scaway is modeled as a sequence of sinusoidal waves with random
amplitude and length. The statistical weight of each wave is caleulated with equation
(SIS
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While direct application of Melnikov's method is considered to be too complex
for the level 1 vulnerability criterion, the complexity of the the necessary calculations
seems to be consistent with the requirements for the level 2 vulnerability criterion.

For each wave associated with a wave length and amplitude interval (i.e., a given
4; and a;) associated with a wave spectrum, the speed of the ship is compared with the
speed corresponding to the second threshold for surf-riding, calculated with Melnikov’s
method (4.51). This comparison (using Froude number F») yields a factor C2;:

1 if Fn>Fng,(h,.a)
2, = " o (4.66)
0 if Fn<Fng(h,.a)

The weighted average of the factor C2; over all of the values of 4; and a; represent
the criterion:

N

C2H s Tyy= 3.0 W2y (4.67)
i=l =l

e

Here, the criterion (2 is shown as a function of the significant wave height fs and
the mean zcro-crossing period 77, since the distribution of wave numbers and amplitudes,
used for the calculation of statistical weights, depends on the spectrum defined with these
paramcicrs.

The long-term version of the criterion can be formulated by averaging (4.67) over
the values of significant wave heights and mean zero-crossing period using entries of
scatter diagrams as weights:

! S CO ey YN, T ) (4.68)

N He T,

2, =

Herc, N(Hs,T7) is the number of observations of a sea state with significant wavc height
Hs and mean period of zero-crossing 77, while N7, is the total number of observations
available.

4.5 Results of Sample Calculations

Calculations were performed for the sample population of ships and are prescnted
in Table 6. The calculations included both versions of level 1 criterion (4.64) and (4.65)
as well as the short-term version of the level 2 criterion. The sca state uscd for the level 2
criterion is characterized by the following values of significant wave height and the mean
zero-crossing period:

H.=25m T,=85s (4.69)

As it can be seen from Table 6, all the criteria produced an essentially identical
answers. Both the fishing vessels and the naval combatants were assessed to be
vulnerable to surf-riding and broaching-to.
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Fishing Vessel 1 (Purse seiner) is known for its vulnerability to surt-riding and
broaching-to that was confirmed in numerous model tests (Umeda, 1999, Umeda et al
1999). Experimental data are also available for th¢ Naval Combatant 2 (ONR
tumblehome topside model). showing possibility of broaching-to (sec Umeda. ct al..
2008: Araki. et al., 2010).

The sample calculations show the consistency of the criteria. the level 1 criteria
always show vulnerability. if it was indicated by the level 2 criteria.

Table 6 Sample Vulnerability Check for Surf-riding

by Level 1(4.64) Level | (4.65) Level 2(4.67)
Sample ship L.m | Fn kis | Value | Outcome | Value | Ouicome | Value | Outcome
Fishing Vessel 2 21.56 | 0.495 | 14 | 0.280 | Fail 0.3 Fail 0.341 | lail
Fishing Vessel 1
(ITTC A2) 345 {0475 |17 | 0280 | Fail 0.3 [Fail 0.556 | Tail
General Cargo 1{560) 121.9 | 0.268 | I8 0.287 | Pass 0.3 PPasy 0,000 | Pass
RoPax 137 | 0267 [ 19 | 0290 | Pass 0.3 Pass 0.000 | PPass
Bulk Carrier 2 145 [ 0191 | 14 | 0291 | Pass 0.3 Pass 0.000 | PPass
Naval Combatant 2
(ONR TH) 150 | 0.402 | 30 { 0.292 | Fail 0.3 IFail 0.203 | Fail
Naval Combatam |
{ONR FL) 150 {0402 | 30 | 0.292 | Fail 0.3 Fail 0.203 | Fail
General Cargo 2 (C4) 161.2 | 0.233 | 18 0.294 { Pass 0.3 Pass 0.000 | Pass
Containership 5 (C11) 262 10254 |25 |0312 ] Pass N/A | Pass 0.000 | Pass
LNG Carrier 267.8 L 0181 | 18 | 0313 | Pass N/A | Pass 0.000 | Pass
Bulk Carrier 275 | 0159 | 16 | 0.314 | Pass NA | Pass 0.000 | Pass
Passenger Ship 276.4 | 0247 | 25 | 0.315 | Pass N/A | Pass 0.000 | Pass
Containership 4 2832 | 0244 | 25 | 0316 | Pass N/A | Pass 0.000 | Pass
Tanker 320 10129 [ 14 0322 Pass | N/A_ | Pass 0.000 | Pass
Containership | 3226 |1 0229 | 25 | 0323 | Pass N/A | Pass 0.000 | Pass
Containership 3 330 0.226 | 25 0.324 | Pass N/A Pass 0.000 | 1Pass
Containership 2 376 0.212 | 25 0.332 | Pass N/A | Pass 0.000 | Pass

4.6 Summary

This section describes the development of vulnerability criteria for broaching-to.
Subsection 4.1 describes the physical background of this mode of stability failure;
broaching-to 1s a violent uncontrollable turn occurring in steep stern quartering and
following scas. Surf-riding is the capture of a ship by a wave when it is madc to move
with the wave cclerity. The surf-riding phenomenon usually precedes broaching-to, so
determining vulnerability for broaching-to can be performed by the evaluation of a ship’s
propensity to surf-ride.

There are two characteristic speeds. or Froude numbers, which are associated with
surf-riding— typically called thresholds. The first threshold corresponds to the situation
when the surf-riding becomes possible at a certain location on the wave and
instantaneous specd.  The second threshold is associated with the Froude number when
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the surf-riding is inevitable for all possible crest locations and velocities.  The second
threshold is used for the devclopment of criteria. Subscction 4.2 reviews the
mathematical apparatus necessary for this purpose and describes two methods for
calculation of the speed, corrcsponding to the second threshold: direct numerical
integration and an approximatc Melnikov’s method.

The section 4.3 deseribes the development of level 1 vulnerability criteria. As the
caleulation of the second threshold is too complex for this lcvel, dependence of the
Froude number corresponding to the second threshold on the wave steepncss is calculated
and approximated with a regression formula. This allows for formulation of the level |
criterion using the linear dependence of the Froude number on the ship length. An
alternative level 1 eriterion is also described.

Subseetion 4.4 is focuscd on the level 2 vulnerability for surf-riding. It is also
based on the seeond threshold evaluated with Melnikov’s method. The eriterion is
formulated for irregular waves using envelope theory in a way similar to the level 2
vulnerability criteria for pure loss of stability.

Sample calculations were performed for 17 ships.
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5 Vulnerability Criteria for Dead Ship Conditions

This seetion is focused on the vulnerability of a ship to stability failure in dead ship
conditions. The physical background of the phenomena is presented and the forees acting
on a ship in dead ship conditions are briefly reviewed, ineluding the influence of the
freeboard on the ship dynamics in dead ship conditions. A proposal for using modified
weather eriterion as the level 1 vulnerability eriterion is examined. An outlook for the
level | and 2 vulnerability eriteria is presented.

5.1 Physical Background

The danger to the stability of a ship in rough weather, when the ship loses power,
was understood by naval architeets as early as when the sail was abandoned as a souree
of power. Typieal features of this generation of ship ineluded a superstrueture amidships,
so the windage arca was distributed approximately symmetrically. This resulted in the
ship being vaned or reverting to a beam seas position in the dead ship eondition,
maximizing the adverse effeet of wind and waves.

Dead ship eondition was the first mode of stability failure addressed with physies-
based severe wind-and-roll eriterion, also known as the “weather eniterion,” whieh was
adopted by IMO in 1985 (Res. A.562(14)) and is now embodied in section 2.3 of the
2008 IS Code, Part A. The seenario of the weather criterion is shown in Figure 5.1.

This scenario assumes that a ship has lost its power and has turned into beam seas,
where it is rolling under the action of waves as well as heeling and drifting under the
action of wind. Drift-related heel is a result of aetion of a pair of forees: wind
acrodynamie foree and hydrodynamic reaetion eaused by transverse motion of the ship.

Next a sudden and long gust of wind oceurs. The worst possible instant for this is
when the ship is rolled at the maximum windward angle; in this case, action of wind is
added to the action of waves.

The strengthening wind inereases drift veloeity and this leads to an inerease of the
hydrodynamie drift reaction. The increase of the drift veloeity leads to the inerease of the
hydrodynamie reaetion and, therefore, to the inerease of the heeling moment by the pair
ot aerodynamie and hydrodynamie forces.

The gust is assumed to last long enough so the ship can toll to the other side
completely: the achieved leeward roll angle is the base of the eriterion. If it too large, or
some openings may be flooded, the stability of the ship is considered insufficient.
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A ship lost its power
and has tumed into
beam seas; she is
rolling in waves and
drifts under the wind

A sudden (and long)
wind gust has occurred
when the ship rolled
windward

The ship starts to roll
back under combined
wave and wind action.
[Jrift reaction Velocity of drift and drifi
reaction start to increase

The ship continues to roll
leeward, while drift
velocity and drift reaction
continue to increase,
providing additional
heeling moment

!][I Fang The ship has reached a
maximum roll angle on

the leeward side
Bl This is most

likely the instant
for stability
failure

Figure 5.1 Scenario of Stability Failure in Dead Ship Conditions

5.2 On Dynamics of a Ship in Dead Ship Conditions

5.2.1 Description of Forces

The physics of the stability failure in dead ship conditions is not simple. Most
modern ships do not have symmetrical windage area forward and afi, and as a result, such
a ship will be located at a certain angle rclative to wind and wave dircction, which means
that the consideration of motions may not be limited to just the transverse plane.

Even if beam seas are assumed (this is the first significant simplification), the
problem still has be characterized by thrce degrees of freedom (sway/drift, heave and
roll) and include forces of diffcrent characteristics. A brief discussion of these forces and
the methods to estimate them is presented below, (excluding the forces related to entrance
of deck into water, which are considered in the next subsection).




Hydrostatic and Froude-Krylov forces and moments are the result of the addition
of normal pressures from the water onto the submerged portion of the hull. These forces
include changes in pressure because of the waves, but do not include changes causcd by
diffraction and radiation of waves from the moving ship. The calculation of these types
of forces is not difficult; well-established numerical procedures are available, although
additional care may be necessary for large amplitude radiation and ditfraction forces
(Bclknap. et al., 2010). The problem associated with these forces is that the rcsults, given
for the general case Froude-Krylov forces, cannot be separated from thc hydrostatic
forces. In terms of ship dynamics, this means that both excitation and restoring are
expressed in one term. and, as a result, the dynamical system cannot be expressed as an
ordinary differential equation.

Diffraction and radiation forces take into account the presence of a ship and its
influcnce on the local pressurc field. Incoming waves are diffracting and reflecting from
the ship’s hull, as they would from any other body in the fluid. The ship is also moving
and generates waves. The ship-generated waves interfere with the incoming waves, and
distort them. As a result, the pressure field changes and the corresponding wave force is
different from only the Froude-Krylov component.  The introduction of diffraction and
radiation forces covers this difference. The calculation of these types of forces is more
involved, as a system of partial differential equations must be solved numerically.
Nevertheless, because the viscosity of water does not have much of an influence for this
scenario, the problem is still addressed within potential flow hydrodynamic theory.
Computationally, this mcans that it is enough to consider the boundary rather than the
entirc volume. Also, the value of these forces is relatively small in comparison with the
Froude-Krylov forces.

Damping forces are usually attributed to the oscillatory part of motions (keeping it
separatc from the hydrodynamic reaction to drifi, which is not oscillatory). The damping
forces arc the result of the dispersion of kinctic energy of oscillatory ship motions and are
applied to all three degrecs of freedom. There are three distinct mechanisms of how the
energy is lost. First, the energy is taken away with the waves that the ship makes. This
component is calculated within the framework of potential flow hydrodynamics and it is
dominant for hcave motions. The second component is related with generating and
shedding vortexes, while the third component is related to skin friction. The calculation
of these two components leads to the consideration of fluid volume, as potential tlow
hydrodynamics is no longer applicable. This takes the problem into the realm of
Computational Fluid Dynamics (CFD). and increases the computational cost by several
orders of magnitude. As these components are important for roll motions, enginccring
solutions to approximate this energy loss includes the use of roll decay tests.

Inertial hydrodynamic forces, commonly presented as added masses, are
calculated within the framework of potential flow hydrodynamic thcory, and their
cvaluation is not difficult.

Aecrodynamic forces also have a vortex nature. The common way to evaluate
these forees is by mcans of a model test in a wind tunnel. This conventional way docs
not account for two circumstances that may be significant for stability assessment of dead
ship conditions. When the waves are large, they influence the air pressure field: in a
trough, the waves can shield the ship from wind and decrease acrodynamic forces. Also,
when a ship is rolled, the decks also work as an aerodynamic surface and produce force.




Some experimental data has shown that deck-generated forees may exist for small angles
as well. and that these forees may be significant (Belenky and Sevastianov 2007).
Another possible deviation from the conventional scheme is the case of very large
passenger vesscls, where the spatial variability of the air flow may not be insignificant.

Hydrodynamic drift reaction forces are somewhat similar in nature to
acrodynamic forces: generation and shedding vortices play an important role. However,
there is no established mature technology for measurement of thesc forecs. Again, some
limited experiment-based information is available from (Belenky and Sevastianoy 2007).

5.2.2 Influence of the Deck Entering the Water

If a ship has lower freeboard for a substantial part of its length, the forees related
to the cntrance of the deck into the water may play a significant role in the dynamics of a
ship. A rather comprehensive review of this subject is available from Belenky and
Sevastianov (2007), so only the key points are reported below.

Also, there is a diffcrence between two situations: water on deck and deck in
water. Water trapped on deck (without an interface of the green water with the outside
fluid domain) acts like a moving mass when the ship rolls, while the deck-in-water
situation (where the water on deck and outside the hull can be considered as one fluid
domain) leads to thc development of hydrodynamic forces on the deck surfaces. which
dominates the dynamics. These eftects were known since the late 1960s. and have becen
discussed previously at IMO (IMCO STAB/INF.27, 1966) and in succceding scssions.

The influence of the deck entering water leads to drastically different dynamics
between high and low freeboard ships. under the action of a similar sudden gust of wind,
see Figure 5.2.
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Figure 5.2 Differenee in Response to a Sudden Wind Gust (Belenky and Sevastianov, 2007)
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A trait of stability failure in the dead ship condition is that the forces of a ditferent
physical nature may dominate the dynamics, depending on geometry of the hull, as well
as the geometry of its topside.

5.3 Vulnerability Criteria for Dead Ship Conditions

5.3.1 Level 1 Vulnerability Criterion

Any type of ship may be vulnerable in a dead ship condition, as synchronous roll
resonance and large heeling moments due to wind may cause stability failure for a
conventional ship, as well as an unconventional ship. Vulncrability to stability failure in
dead ship conditions is determined by the weather criterion of the current IS code.
Thercfore, it may scem logical to use the modification of current weather criterion as the
level one vulnerability criterion as it is proposed in Annex 1 of SLF 52/INF.2 and in
SILF 5343,

On the other hand SLF 53/3/6 statcs that modification of the wcather critcrion is
not advisable, as it was not intended to be a module criterion; it only can be used “as is.”
The reason is that the parameters of the weather criterion were calibrated using a certain
population of sample ships; as a result, these parameters are not independent, and may
not be appropriate for unconventional ships.

The following discussion focuses on the assumptions that formed the background
of the wcathcer eriterion and explains why modifications to it are not advisable.

Bascd on the formulation of the severe wind and rolling criteria in the 2008 Intact
Stability Code (and its description in the explanatory notes). the roll motion can be given
as:

(I, + 4,6+ M ($)+A-GZ($) =M, (D+ M (1) (5.1

Herc /I, is moment of inertia, 444 is added mass in roll, M} is nonlinear roll damping, A is
weight displacement, and Mgy is the Froude-Krylov excitation moment, while M, is the
wind heeling moment, including the influence of the gust.

It is assumed that coupling between heave and roll is small and coupling between
sway and roll is cancelled out by not including the diffraction and radiation into the wave
excitation — that is why the equation (5.1) only includes the Froude-Krylov component.

The energy balance method is used to solve the equation {5.1). The main idea is to
re-write {5.1) in the form of the balance of energy and work for the different forces. Re-
writing the equation of motion involves integration of the motion equation (5.1) from
some initial state, characterized by the initial roll angle and rate, ¢0,d>0. See (Belenky
and Sevastianov, 2007) for details of the derivation.

The integration of inertia yields the change of the kinetic energy of the dynamical
system:




£ i §
(I +Ay) [bdb=Kdy.8)= I, + 4, )[:——7“] (5.2)
¢ 2

The work of the damping moment is expressed as
¢
[M,(@)do = 4,(65.6) = 4,,(15.0) (5.3)
4

A closed-form expression for (5.3) is only available when the solution and its
derivatives are also expressed in closed-form. However, this is not the ease for the
restoring term:

¢

A+ [GZ(pyip = P(#,.9) (5.4)

@

The integral is the area under the GZ eurve -- a traditional definition of ship
“dynamie stability”. This quantity is known. To express the work of Froude-Krylov
foreces, the time history of motion is required, similar to ease of the work of the damping
moment:

¢ ’
J'M,,A. ()do = jA, o SIN(Odd = A, (050,00 = A, (1,.1) (5.5
$ &,

Here, Arx is the amplitude of the Froude-Krylov forees. The expression of the
Froude-Krylov forees only using a sine funetion is already an approximation and is only
aceurate when the ship breadth is small eompared to the wave length. The introduetion
of the effeetive wave slope allows use of this approximation for the remainder of the
cases.

The work of the aerodynamie heeling moment is expressed as:

¢

[ (0o = 4, (6-6,)=4,(6,.0) (5.6)
®

Even for a constant wind heeling moment, with magnitude A4, the time history of the
solution 1s required.

The energy/work balance equation is expressed as:
K(9o)+ A, (g1 + P(90.0) = A, (90, 0) + A, (1,.0) (5.7)

Only two of the five terms of the equation (5.7} ean be evaluated without having
the full solution of the motion equation (5.1). Therefore, a praetical application of the
energy balanee method is impossible without additional assumptions.

To demonstrate how the energy balance method works and what the time history
of cach term looks like, consider a linear equation of roll:

(I +A)p+B,d+A-GM - g=M, (1)+M (1) (5.8)
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Another assumption is that the transition is over and roll motions are in the stcady
state mode:

o = ¢, sin(or +p)+¢, (5.9)

Here, ¢ 1s the static angle of heel causced by constant wind, while ¢, is the roll amplitude
and f3 is the phase shift.

It is obvious that steady-state solution of the linear differential equation cannot
describe large roll motion of a ship under a sudden gust of wind. Again, this model is
considered only to clarify some concepts of the energy balance mcthod. The closcd-form
solution (5.9) allows expression of the work due to damping, wave excitation, and wind
hceling.

The work of the damping moment is expressed as:

A,y 1) =8B, J‘oﬁdcb =28 I¢io)2 cos’ (or +pdr =
% y (5.10)
=B b 0’ {(: -:‘,)+2i(sin(zmr +2B)-sin(201, + 2[3))}
[4)]

The work of wave excitation contains a term very similar to work of the damping
moment:

¢ I
Aty = [, sin(ond = [4,, sin(o)ddr =
L f

1 .
=——0, s ' —cos(2 2B)) -
==g b, 4, cos[}(cos(.an +2p)—cos(2wt, + B)) 5.11)

-7])-¢HA,_.Kmsin B{(: —1)+ ,)L(sin(zmr +2p) - sin2ot, + 23))} =
< <1}

= Apgne Ugs 1)+ Apy, U o0)

Therefore, it makes sense to present this work as the sum of the two: the work of
the active part of the excitation that is similar to the work of the damping moment:

Apse o) = -12¢aA.‘-A'(nSin p

| (5.12)

{(t —t, )+ 2—(sin(2o)l +2pB)—sin(Qov, + 2B))}
®

The other part is the synchronization (or reactive) part of the work of the
cxcitation:

A (g, 1) = —?}%A:.x cosB(cos(2ot +2B) —cos(2mr, + 2B)) (5.13)

The work of the aerodynamic heeling momcents 1s cxpressed as:

A1) =40, COS(‘”’ + B)_A'L.‘1¢a COS(“)’O + B) (5.14)
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Expression for the change of Kinetie and potential energy is trivial:

S
K(t,.) =, +A4,,)[¢7——°:| =

’ (5.15)
= (—1%—/1—412413,(02(005(20)1 +2B)—cos(2m¢, + 2B))
P(’o-’) — A(I'A’I |:¢—-"‘£j| =
z 2
= —%A-GM (%gﬁj cos(20t +28)-2¢.4, sin(or + ﬂ))-a— (5.16)

+ %A ‘GM (%qﬁz cos(2at, +28)- 24,8, sin(wr, + ,8))

The time histories of all these eomponents of work and changes of energy are
shown in Figure 5.3. It is elear from this figure that the energy balanee equation (5.7) ean
be separated into two independent balance equations:

An(’n”)= Apse (’n-’) (5.17)
K(d’m qﬂ + P(¢'m¢') = A.A‘(q)il- ¢) T ‘4I-'.\'11V.."(¢)0'¢.) (5 1 8)

This separation has a physical meaning. As is well known, the role of periodic
exeitation is two-fold: compensation of the damping losses and synehronization, i.e.
forcing the dynamie system to oseillate with the cxcitation frequeney. rather than with its
own (natural) frequency.

Y ] = r . , ..
% Polential energy W Work of synchronising
’ ! - s ', componenl of wave excitation

Work of heeling moment caused
by conslanl wind

Kinetic energy

Work of damping "

- time

Work of active component of wave
excitation

time

Figure 5.3 Time Histories of Work and Energy Changes Based on the Steady-State Solution of the
Linear Equation of Roll (Belenky and Sevastianov, 2007)




This approach allows for cxamination of the phenomenon of the synchronous
resonance from a diffcrent perspective. When a linear system is in resonance conditions.
all the work of thc periodic cxcitation is used for the compensation of losses due to
damping, as the excitation frequency and natural frequency are equal. It also can be secn
from equation (5.13) that at the resonance condition the phase shift, B, equals n/2; this
makes the entire (5.13) equal to zero. so that only the active component of the excitation
remains.

Then, in the case of the steady state resonance in a linear system, the balance
cquation can be re-written:

K6y 0)+ P(6y.0) = A,(4,.0) (5.19)

Equation (5.19) is actually used in the weather criterion to find the angle of roll,
and just the change of potential energy is defined using the area of the GZ curve. Figure
5.4 illustrates this procedurc:

0" 90 _ A.(90.9)= P(90.9)

10 5.20
2 2 (f,+4,,) D)

AGZ Si=An(t.fo) Ss=P(t,10)

M qus

b
L L]

/ | -
Figure 5.4 Evaluation of the Dynamic Angle under a Sudden Gust of Wind Using the Energy Balance
Method (Belenky and Sevastianov, 2007)

The discussion above allows for summarizing the assumptions of the weather critenion:

o  The energy balancc of a nonlinear system at resonance behaves the same as the
lincar system in the steady-state mode. In reality, the synchronous resonance in a
nonlinear system is quite different, as the natural frcquency depends on the
amplitude.

e  The influence of the transition for energy balance is negligible. Even if the steady-
state mode existed prior to the sudden gust of wind, the transition starts once the
gust is applied.

¢ The hydrodynamic part of roll excitation cancels out with sway motion. This
assumption may require long waves (in comparison with the ship sizc) to be
accurate.

¢ The heave has no cffect on roll. This assumption may work for rclatively wall-
sided ships; if the ship has a more complex geometry. the GZ curve may change
significantly with large heave.




e Decks do not generate aerodynamic forces. Belenky and Sevastianov (2007)
report on references showing they can generate acrodynamic forccs.

e The hceling moment of drifi hydrodynamic force is ncgligible.  Modcl tests
revicwed in Belenky and Sevastianov (2007) show that it may be of the same
order as that of the acrodynamic moment.

e The deck never enters the watcr.

Obviously, all of these assumptions need to be valid to make the weather criterion
practical. Taking into account the complexity of the physics associated with motions in
dead ship conditions. the wcather critcrion definitely should be considered as a marvelous
achievement in the development of stability regulations.

To compensate for the inaccuracies arising from these assumptions, all the
paramcters of the weather criterion were calibrated based on calculations on hundreds of
sample ships’. That is why it is impossible to modify the weather critcrion without re-
calibrating its paramctcrs and that is why it is so important to know the limits of
application of thc weather critcrion.

The applicability of the current weather criterion is limited, as it was tuned to a
ccrtain population of ships which existed at the timc of its development. Recognizing this
fact, MSC.1/Circ.1200, “Intcrim guidelines for alternative assessment of the weather
criterion,” contains a specification of the limitations of applicability of the current
weather critcrion. In principle, the level 1 vulnerability criterion should be built around
the applicability of the weather criterion.

5.3.2 Level 2 Vulnerability Criteria

Although the current weather criterion is mandatory. if it cannot be satisfied, and
the parameters of a ship are outsidc of the specified limits, then model tests can be
applied as an alternative assessment method. This means that MSC.1/Circ. 1200 can be
considered in terms of multi-layered approach. where the limitations of the current
weather critcrion itself play a role for the vulnerability criteria for dead ship conditions,
and the model test is the direct stability assessment method.

The level 2 vulncrability criterion for dead ship condition should then be focused
on double checking if a ship rcally has a problem with stability, since failing the level 1
critcria simply should mcan that the weather criterion is not applicablc. There arc scveral
factors that may need to be considered:

e The relation between the submerged hull form and drift forces:
¢ The freeboard and the interaction of the deck and watcer:

e The influcnce of the windage distribution on the actual position in dead ship
conditions;

e The influence of the spatial variability of wind, including very large
superstructures;

¢ The influence of irrcgularity of thc waves and the stochastic character of the wind.

* According 10 Prof. L.K. Kobylinski, who was one of the developers of the weather criterion
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Of these five factors only the last one was addressed in SLF 52/INF.2; so the
consideration of other factors still remains for the development of level 2 vulnerability
criteria for dead ship conditions.

5.4 Summary

This section focused on the vulnerability of a ship to stability failure in dead ship
conditions. Subsection 5.1 describes the physical background of the phenomena,
focusing on the seenario that is assumed for the eurrent weather eriterion. This scenario
ineludes the ship’s turn to beam seas after engine failure, resulting in resonant rolling and
the sudden action of a gust of the wind.

Subseetion 5.2 examines the forees acting on a ship in dead ship eonditions and
briefly reviews the influence of the freeboard on the dynamics of a ship in dcad ship
conditions.

Subsection 5.3 looks into a proposal of using modified weather eriterion as the
level 1 vulnerability eriterion. The subseetion contains the analysis of the assumptions
of the current weather eriterion and provides a justification to the statement that the
modifieation of the current weather eriterion is not advisable. An outlook for the future
development of level | and 2 vulnerability eriteria is presented.
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6 Framework for Direct Stability Assessment

This section contains an overview of the issucs related with the direct assessment
of dynamic stability for ships found to be vulnerable. This section considers the most
general problem related to the direct assessment of dynamic stability, reviews three
methods that are being developed for dynamic stability problems, and examines specifics
of validation of 1o0ls of direct assessment, keeping in mind the extreme rarity of stability
failures.

6.1 Formulation of the Problem

6.1.1 Introduction

Once vulnerability to a certain mode of stability failure has bcen established, a
direct assessment of dynamic stability for that mode is expected to follow, as defined in
the framework of the new generation of intact stability criteria.

The objective of direct stability assessment may be seen as two-fold: as a tool for
detailed design analysis, and for the development of ship-specific operational guidance.
At the core of the direct assessment lics a method capable of reproducing ship motions in
scvere seas, with a fidelity that is sufficient for sound technical decision-making.

Considering the current state-of-the art of computational ship hydrodynamics for
these rare problems, general direct asscssment options appear to be limited to model tests
and fast simulations. These fast simulations use potential flow wave-body hydrodynamic
codes, and are supplemented by empirical formulations for viscous and vortex forces,
which are based on results from model tests. Due to the necessary computational speed
requirements, the application of other numerical methods seems to be limited for specitic
tasks. Higher-fidelity numerical methods, such as computational fluid dynamics (CFD),
may be used to evaluate coefticicnts for viscous and lifting force models. Ordinary
differential equations (ODE) may be used for extreme nonlinearity, where application of
physics-based codes may not be practical.

The validation of simulation tools for direct assessment represents a challenge and
requires special attention (Reed, 2009). There are several aspects to this problem. First, it
needs to be demonstrated that a tool is in fact capable of reproducing the considered
mode of stability failure, and that the results of the simulation do not contradict the
technical community's accepted knowledge of the physics of the problem (an example of
this type of demonstration can be found in Spyrou, et af., 2009). Bcecause the simulation
is ¢xpected to be performed in irregular waves, it is necessary to demonstrate that the
model used for irregular waves is valid from probabilistic point of view (i.e. its
autocorrelation function and distribution correspond to expected values). Quantitative
validation may include comparisons with experimental measurements of forces acting on
the ship and trajectories and motions for a ship maneuvering in waves.
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6.1.2 Nonlinearities and the Problem of Rarity

Failures related to a ship’s motions and loads in severc scas are characterized by
both their rarity of occurrence and significant nonlinearity for cach failurc mode. Because
of this, the accurate cvaluation of the ship response in these conditions becomes difficult
and impractical with the usc of traditional “brute-force™ dircct asscssment methods—
Montc Carlo simulations and/or a large number of experimental realizations in the basin.

Asscssing the dvnamical response to these wave sequences constitutes the general
problem of rarity — when the time between events is long, comparcd to a relative time-
scalc. The problem of rarity may be solved by separating the ship response into sub-
problems, according to their time scale. For ship motions, the simplest example of an
implementation using this approach is the piecewisc-linear method for calculating
capsizing probability (Belenky 1993; Paroka & Umeda, 2006; Paroka. et al.. 20006;
Belenky, ¢t al., 2009). The same principle has also been applied to determinc nonlincar
response using numerical simulations (Belenky. et al.. 2010).

For example, large roll motion response (i.e. roll near, or beyond, the maximum
of the GZ curve) appears when a dynamical system is characterized by signilicantly
nonlinear stiflness. By its nature, the point of maximum is when the oscillator behavior
changes from an attractor to a repeller. Additionally, large roll angles are typically the
result of specific phcnomena — nonlinear excitation, which may be exhibited in the form
of fold bifurcation, Such phenomena are not limited to roll motion. Large yaw angles
may also be the result of fold bifurcation (Spyrou 1997), such as in the case of direct
broaching.

This nonlincarity makes it difficult to use traditional techniques to determine
values associated with rarc cvents, such as extremic value distributions. While the theory
of extreme distributions is still applicable, the fitting of these distributions may be
difficult, duc to the insufficiency of the available data where thesc nonlincaritics arc
significant. This situation can be resolved with the explicit modcling of nonlinear
phenomena, but this would require consideration of the influcnce of random initial
conditions and could be influenced by the occurrence of previous nonlinear events,
depending on the timc-scale. These considerations lead to the concept of a separation
between the nonlincar phenomena resulting in a large response and the conditions which
lead to the occurrence of such phenomena.

6.1.3 The Principle of Separation

This scparation leads to a modeling of the ship responsc problem as a
combination of two sub-problems: non-rare and rare. The non-rare problem is focused on
determining the probability of occurrence of the precursor conditions which may lead to
the nonlinear phecnomena resulting in severe rcsponse, as well as determining the
distribution of the appropriate initial conditions. The rare problem is locused on
determining whether large responses occur for particular initial conditions.

136




In prineiple, if the failure is the result of a chain of events, there may be several
rare problems involved. For example, in broaching due to surf-riding, the occurrence of
surf-riding is rcquired for the broaching event to manifest itself for the given
environmental conditions. The non-rare problem would definc the conditions where surf-
riding is possible, while the rarc problem represents the probability that surf-riding will
occur, given the existence of the necessary conditions. The inception of broaching, given
the occurrence of surf-riding (vaw repelling), is a function of the manifestation of
instability in yaw aficr the occurrence of the surge equilibrium.

The main assumption behind the separation principle is that a mechanical system
¢an be “restarted” at any moment of time, if the state variables at the instant of
“restarting” are fully determined. For the case of a body moving in vacuum, this is an
exact statement. However, for a ship on the free surface, this is an assumption because
the hydrodynamie memory effect cannot be fully realized. In this sense, all of the
necessary memory efteets are contained within the initial conditions at the initialization
of the rare problem.

6.1.4 Relation with Time

A failurc event is assumed to follow the assumption of Poisson flow, so that the
probability of at Icast one failurc during time 7 is expressed as:

P(T)=1-exp(-AT) (6.1)

Here, A is the rate of events. The assumption of Poisson flow is only applicable if the
failurc events may be considercd as independent events. By considering the rarity of a
failurc, this assumption seems to be reasonable and can be explicitly checked. The
problem of determining the probability of a failure may be considercd to be solved
completely, if the rate of an event is found (Sevastianov 1994).

6.2 Addressing the Problem of Rarity

This subseetion reviews three methods that are being developed for dynamic stability
problems: the peaks-over-threshold method (using a fitted distribution of the peaks
exceeding a fixed roll angle threshold), the split-time method (where the stability failure
is associated with the upcrossing of a time-variant roll-angle-threshold, with roll rate
exceeding the eritical value), and the wave group method (where the ship response is
cvaluated) for a scries of deterministic sequence of waves with random initial conditions.

6.2.1 Peaks over Threshold Method

Statistical extrapolation, as is obvious from the term itself, is focused on the use
of observed statistics for the prediction of the statistical charactcristics of an cvent which
is too rare to observe directly. In principle, extreme value theory (Gumbel 1958) allows
one to derive a distribution of the largest value observed during a given time. However,
thesc derivations require exact knowledge of the distribution of the value and arc quite
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lengthy even for a normal distribution. At the same time, formulae for the distribution of
an extreme itself are quite simple. Depending on the distribution of the value, it could be
one of three extreme value distributions: Gumbel, Freschet, and Weibull. As a result, the
practical solution is to fit one of these distribution using either experimental or simulation
data. This approach has been used by MeTaggart (2000, 2000a) and McTaggart & deKat
(2000) to evaluate the probability of stability failure of an intact vessel.

The main difficulty with this approach is that collected motion data are
statistically dominated by small motions, which may make a purely statistical prediction
quite questionable. This difticulty can be avoided by applying the Principle of Separation.
In terms of a statistical fit, this means that only the data above the threshold are used for
extrapolation. The non-rare problem consists of a simple counting of the exceedances of a
process over a given threshold, The threshold is chosen to separate regions where a linear
solution is applicable from the regions where nonlinearity may be significant for the
failure event of interest. The rare problem is solved by fitting an extreme value
distribution to the data over the threshold. The method is generally known as the Peaks-
Over-Threshold (POT) method. The application of the POT method for stability failures
is considered by Campbell and Belenky (2010). The coneept of the method is illustrated
in Figure 6.1.
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Figure 6.1 The Concept of the Peaks-Over-Threshold Melhod, (a) the General Scheme; (b) Influence
of the Threshold

The POT method separates the solution based on a threshold. The rate of events is
determined in the form:

h=E-P. (6.2)

Here, & is exceedanee rate of a threshold and P is a conditional probability of a given
failure if the threshold has been erossed. It can also be considered as the fraction of
uperossings which lead to a failure. The evaluation of the uperossing rate is the objective
of the non-rare problem, while the conditional probability of failure is the objective of the
rare problem.

The non-rare problem is well known from the theory of stochastic processes (e.g.
Kramer and Leadbetter, 1967). If the distribution of a stationary process and its derivative
are known, then the uperossing rate can be expressed as:
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&= (0 )]d) 118)db (6.3)

The problem of modeling the distribution, based on the results of numerical
simulations accounting for statistical uneertainty, is considered in Belenky and Weems
(2008a). The non-rare-problem can be solved statistically by counting the number of
observed upcrossings {upcrossing rate is the mean number of events per unit of timc).
Confidenee intervals for the estimatc can be evaluated using the binomial distribution of
an auxiliary random variable (Campbell and Belenky, 2010, Belenky and Campbell
2011).

There are two possible formulations for the rare problem: using an extreme valuc
distribution, or using a statistical fit ot the peaks above the threshold. The formulation for
the rate of events using extreme value distribution (Campbell and Belenky, 2010a) is
given as:

b= = Infexp(- 27, )+ (1= expl-7, )JF6,.2) (64

Here. the lcvel ¢, is associated with stability failure and 7y is the observation time used
1o fit the extreme value distribution Fg;-.

It is also possible to fit a distribution using a samplc of the peaks that exceed the
threshold. In this case, the formulation becomes very similar to the split-time method:

A=E-Bey B [fror @b =1- Fyr(6,2) (6.5)
L%

Here, fpor is a distribution fitted using the available data ot peaks over the threshold and
Froris the corresponding eumulative distribution function.

The application of the POT mcthod is limited by relatively mild nonlinearity.
Roughly, this mcans that the level ¢, associated with stability failure should not exceed
the maximum of GZ ecurve. The data used for the rare problem may not contain cnough
statistical information on the behavior of the system beyond that point. The range around
the maximum of the GZ curve is characterized by scvere nonlinearity, caused by the
simultaneous influencc of the attractor at upright cquilibrium and the rcpeller at the angle
of vanishing stability. This severc nonlinearity is manifested in a very significant
sensitivity to initial conditions, resulting in tremendous physical uncertainty for data
collected in this range.

As the intended use of the POT mcthod is the evaluation of the probability of a
partial stability failurc, the method has been generalized to handle cases when the Poisson
flow assumption may not be dircctly applicable. This includes cascs with following and
stern quartering scas, parametric roll resonance, and other cases when the response
spectrum becomes narrow and the response itself becomes clustered. It also includes
cases when the failurc is defined as the crossing of a level on either side: port or
starboard. As the Poisson flow requirements must be met to relate the probability of
failure with the time of cxposure, an envelope is used instead ot the actual process.
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As the process of motions 1s not necessarily narrow banded, the uperossing of a
theoretical envelope may overestimate the rate of failures, therefore, a piecewise linear
approximation ean be used instead (see Figure 6.2).
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Figure 6.2 Approximation of the Envelope for a Non-Narrow Banded Process

All the ealeulations, including the counting of uperossings and the fitting of
distributions, are performed on the peak-based envelope rather than the proeess itself.
This version of the POT method is known as the Envelope Peaks-Over—Threshold. or
EPOT, method (Campbell and Belenky, 2010a, Belenky and Campbell 2011).

The POT/EPOT method ean utilize data from numerical simulation and/or
physieal model tests, but may not be applicable to eonditions with severe nonlinearity,
such as roll angles above the maximum of the GZ eurve, as it does not eontain an explieit
model of extremely nonlinear motion.

6.2.2 Split-Time Method

The split-time method also separates the solution based on a threshold; however.
the method 1s meant to be applicable for severe nonlinearity, up to eapsize. The rate of
events is determined by formula (6.2), while the applieation of the split-time method for
the evaluation of eapsizing probability is illustrated in Figure 6.3.
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Figure 6.3 Application of the Split-Time Method for Evaluating Capsizing Prohabilily
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The formulation of the non-rare problem is identical to that of the POT method.
The solution of the rare problem is found by a set of short simulations, which are focused
on finding the initial conditions at upcrossing which lead to a responsc event of interest
(c.g. a large roll angle or slamming cvent). For example, when the capsizing problem is
considered with just onc degree of freedom, the only initial condition needed is the roll
rate at the uperossing of the specified threshold. A value of the roll rate at upcrossing that
excecds the rate that leads to capsizing is the critical roll rate. Its value can be determined
by a bisection-line method, as illustrated in the insert to Figure 6.3. Once the critical roll
rate is determined, the conditional probabihty of capsizing after upcrossing 1s expressed
as:

P= (1.6 (6.6)
b

Here, £,($) is the distribution of roll rate at upcrossing. It is not equal to the probability

density function (PDF) of roll rates, as an instant of uperossing is not just any occurrence.
The distribution of roll rate at upcrossing can be expressed as follows (Belenky. ef al.,
2008a; 2010)

futhy= o
forcordd vl
]

This method can be applied for cases of extreme nonlinearity, as it contains an
explicit model of very large motions. The method has been gencralized for problems
related to changing stability in waves, such as pure loss of stability, by tracking the
change of the GZ curve in time (Belenky, er al., 2009; 2010). An algorithm for these
calculations was described by Belenky and Weems (2008) and has been implemented in
Large Amplitudc Motion Program (L4MP) ship motion simulation code (Lin and Yue
1990; 1993). An cxample of the GZ curve change for the ONR Topside Series,
tumblehome configuration (ONRTH) (Bishop, ef al., 2005) is shown in Figure 6.4,

. Position of the threshold
GZ
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Figure 6.4 Change of the GZ Curve in Time, ONRTH in Stern Quartering Seas, Sea Stale 7, Speed
15 Knots
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The random changes of the GZ curve in irregular waves result in the necessity of
modeling the threshold roll angle as a stochastic process. In principle, this does not
changc the general scheme of application of the split-time mcthod (sce Figurc 6.5). The
critical roll rate also becomes a stochastic process. To express the probability of capsizing
in this casc, three stochastic processes must be introduced:

=W~ + bt O=¢, (-0 ¥ =D~ b, (1) (6.8)

Here, &,(t) 1s the changing threshold, while ¢n¢ is a position of the threshold in calm
watcr. The process x(f) shows the distance to the moving thresholds, the process x(r) is

its derivative, and the process (/) is the difference between the instantancous and critical
roll rate. Then, the ratc of capsizing can be expressed as:

o 0
A=ERot &= S0 [t Po= [£,00dy (6.9)
1] e

Here, f.(y) 1s a distribution of process y(r), at an instant when the process x(f) upcrosses
the threshold. It has been shown (Belenky, er al., 2009) that this distribution can be
cxpresscd as:

[ @ . ity

1,00 =2 :
S (0.0 | ¥/ (2)dx

0

(6.10)

In this casc, the capsizing cvent is considered as an upcrossing through the time-
dependent threshold, where the instantanecus roll rate exceeds the critical roll rate (sce
Figure 6.0).
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Figure 6.5 Apptiealion of Split-Time Method for the Case of Changing Slabitity in Waves
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Figure 6.6 Definition of Capsizing With Critical Roll Rate

The testing of the concept of the split-time method with changing stability has
been performed with a piecewise linear system, where the decreasing part of stiffness was
random. A special formulation of a piecewise linear term for stiffness allows for the
derivation of a closed form solution. The eonvergence of statistics to the theoretical
solution has been demonstrated (Belenky, ef al., 2009).

It may be possible to cxtend the split time method for surf-riding by considering a
spatial phase portrait described by Spyrou (1996) as a frozen framc in time. A similar
approach was used by Vishnubhota ef al., (2000) for the definition of invariant manifolds
for irregular wavcs,

In principlc, the split-timc mcthod can be used with numerical simulations and/or
model test data. The solution of the non-rare problem does not encounter any significant
difficulties, although the experimental implementation of thc rare problem may bc
challenging, as it requires full control of initial conditions. Some additional discussion on
this topic occurs later in this section.

6.2.3 Method of Wave Groups

The wave group method scparates the problem differently: the first parn
corresponds to ordinary oscillatory response of small amplitude; while the second
represents the extreme behavior produced by the encounter of the wave group. The key
concept associated with this method is to extraet all those sequences of waves (“wave
groups”) that result in unacceptably large dynamic response with random (but near the
upright state) initial conditions.




The occurrence and characteristics of wave groups has been studied extensively in
occanography (for a brief review see Bassler ¢t al., 2008; 2010). From the occanographic
point of view, there are two principal approaches to define wave groups: the envelope
theory of Longuett-Higgins (1957); and the use of a Markov chain representation based
on Kimura (1980). The formulations typically consider wave events that occur above a
given threshold. However, from the ship response perspective, the important
characteristics are different from those used typically in an oceanographic context. Here,
both the amplitude and duration of the wave events must be considered. A definition of
this wave scquence, or wave group, from the ship response perspective is proposcd in
Bassler et al. (2010a); this is briefly discussed below and illustrated in Figure 6.7
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Figure 6.7 Definition of Wave Groups from the Ship Dynamics Perspective: Wave Fvents Must
Occur Far Enough Apart in Time, So That the Autocorrclation Funetion of Ship Response
Effeclively Decays.

Groups of large waves, as well as single large waves, can be rcproduced
deterministically in an experimental basin (e.g. Davis and Zarnick 1964, Clauss 2000,
Bassler ef al., 2008; 2009). Different aspects related to the application of assessing the
response to wave groups and single large waves were discussed by Blocki (1980), Tikka
and Paulling (1990), Boukhanovsky and Degrtyarev (1996), and Alford, er al. (2007).
The first complete implementation of this type of approach with quantitative results was
proposed during the SAFEDOR project (Spyrou and Themelis 2005: Themelis and
Spyrou 2007; 2008). Similar approaches were followed more recently by Umeda er al.
(2007) and Bassler er al. (2010, 2010a).

Intrinsic to Kimura’'s approach is the non-zero correlation between consecutive
waves. This is accommodated by means of a correlation coefficient, vy, between
successive wave heights that, in turn, deterntines the mean group length, j.

A first order autoregressive model could be used for modcling the process of
successive waves. As it’s known, an autoregressive representation of a variable } at time

t depends on certain instants of its past, plus a random variable. For an autoregressive
process of order r:

YO =nY({-D+.+nY(t-r)+e() (6.11)

where n,..., n, are weights that can be related with correlation coefficients and £(¢) is a
zero mean Gaussian whitc noise process. A first-order autorcgression proccss has the
Markov chain property. meaning that the value of ¥(¢) is completely determined by the
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knowledge of ¥{s-1). Kimura had proposed the bivariate Rayleigh distribution as the joint
PDF of successive wave heights /f; and fi> that depends on a correlation parameter « ;
that in turn is a function of the correlation coefficient v, mentioned earlier (see Kimura
1980, and also Themelis and Spyrou 2008 for more details). The probability of a
sequenee of high waves using the eonditional probability that a wave height exceeds the
threshold level H,,, given that the previous wave also exceeds H,, is eomputed from the
following joint PDF:

f(H,.H,)dH dH,

T8

])PZ—P(!{rHZ'Ll |H >‘I7' )_ y-’i (612)
J' [rem, myydm an,
.0
The probability that a wave group has a run length, /. is then:
p(f) = (] B p::)p;{l (613)

In Kimura's theory, group properties are not derived from the spectrum but they
eome from the parameter y,, whose ealeulation is based on a series of wave heights. To
improve Kimura's theory on this, Battjes and Van Vledder (1984) introduced a new
corrclation parameter x,, determined from a spectrum:

K =L I‘S‘(m)e""dw [ (6.14)

mn,

where 7, =2n,/m;/m, is the average period between zero—uperossings. Then a new

correlation coefficient, ¥, can be produced. The parameter v, is. in reality. the eorrclation
cocfficient between points of the wave envelope function, a(f). separated by a constant
time interval, 7,». Therefore, the correlation coeffieient between discrete waves is
replaced {with certain assumptions that, in a strict sense, could only be satisficd in the
limit of narrow spectra) by the corrclation coefficient between points of the wave
envelope. Stansell, er al. (2002) proposed calculating the correlation parameter, &, not
only for the mean zero upcrossing period, T2, but also for 7,/2 and 37,/2. thus putting
forward an improved (averaged) correlation eoeffieient.

An alternative viewpoint to modeling the wave group is discussed below: A
tailure ean be eaused by a single wave. or by a wave group. each resulting in different
dynamical response characteristics for the ship. Therefore, the rate of failurcs could be
expressed as a combination of both types of excitation events:

A=Ay P +Ag Py (6.15)

Hcre, A is the rate of encounter for a wave group, and As is the rate of encounter for a
single wave. Pgrg is the probability of failure if a wave group is encountered and Prgs is
the probability of failurc if a singlc wave is encountered.

The usc of cquation (6.1) for relating the probability of failure with the time of
exposure implies the indcpendence of eneounters with either a wave group or single wave
event. This leads to the definition in equation (6.15) of a wave group or a singlc wave, as
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shown in Figurc 6.7. In this case, from the ship dynamies perspective, all three waves in
the first group must be considered as one excitation sequence event, or wave group cvent,
while all six waves in the second group are considered as another event.

In order to use Poisson flow for modeling the relation with time, one may
consider the response to a wave group encounter as a single random event: then the
response to the current wave group should be indepcndent from the responsc to the
previous group, As a rcsult, there should be enough time betwcen thesc groups for the
autocorrelation function of the response to effectively die out. Thercforc, large wavces
that are close to each other in sequence could be considered as part of the same sequence,
or group, even if they are intermittently separated by a fcw small waves. This approach is
somewhat different from the mainstream wave group approach in the literature,

Two valucs are needed for this definition from the ship dvnamics perspective: the
threshold, a, and the time duration, As. Both of these values can be linked to ship-speeific
propertics and cnablc ship-specific formulation of the charactcristics of the wave
sequence (or wave group) of interest. The threshold is defined as the amplitude of the
cxeitation that lcads to a significantly nonlincar responsc. Onc way to define this
amplitude for roll motion is to use the roll response curve, sce Figure 6.8a, where ¢./¢, is
the ratio of the amplitude of response and the angle of vanishing stability. For this
motion, significant nonlinearity can be characterized as the theoretical possibility of fold
bifureation; this rcquires the existence of at least one point on the responsc curve where
the tangent is vertical. The smallest amplitude of cxcitation, «;, which results in the
appearance of such a point, can be used to determine the amplitude of wave stecpness and
to define the threshold. 1t may be observed that this threshold also corresponds to the
onset of nonlincarity in the ship-specific roll stiffness (GZ curvc).

The interval between the wave events, groups of large waves. or single large wave
can be evaluated using the autocorrelation function, Re(t), of the lincar or lincarized
response. from the non-rare problem, sce Figure 6.8b. The usc of the lincar or linearized
response is fully justified, as the large amplitude responsc is only cxpected as a result of a
single or small group of large waves. As a result. a lincar, or lincarized, model can be
used to detcrmine the response between the excitation cvents of interest. The same
method is also a source of data for initial condition at the instant of group encounter.
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Figure 6.8 The Definition of Wave Groups: () Determining the Threshold and (b) Time Duration
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The non-rare problem is simply evaluating the responsc of the linear, or
linearized, system in the frequency domain. This produces the autocorrelation function
that is used for defining the wave groups and characterizes the initial conditions for an
encounter with the wave group or a single large wave. The rare problem consists of
evaluating the response of a nonlinear dynamical system to a deterministic group of
waves or to a single large deterministic wave. The initial conditions of the dynamical
system at the moment of encounter with the wave event arc random and have a normal
distribution. The variance and mean, if any, are known from the non-rare problem.

Bassler, et al. (2010) described statistical testing of the concept using simulated
wave clevation data. It was shown that a random event of encountering a wave group
and a single large wave follows Poisson flow, as the time between these events has an
exponential distribution, see Figure 6.9a. A method to estimate rates of encounter for a
group and a single wave was also proposed. This can be performed using the distribution
of the number of waves in a group, or the probability mass function (pmf), where the first
bin corresponds to the single large wave events (see Figure 6.9b).

A scries of wave parameter distributions were also studied, including amplitude,
period, and steepness of the first, second, and third waves in a group. These data may be
useful to help formulate a model of a wave group based on ship-specific characteristics
with consideration of the different dynamical response mechanisms associated with
single wave and multiple wave encounters.

The wave group method can be applied to model tests and/or numerical
simulations. Using either technique, the probability of failure due to encounter, Py and
Prrs, as given in equation {6.15), can be determined. Howcver, because of the
formulation of the principle of scparation in this method, precise control of initial
conditions is necessary. This is the subject of ongoing work. For numerical simulations,
one realization for each set of initial conditions can be used to determine the probability
of failure due to the deterministic wave sequence. For model tests, because of inhcrent
experimental uncertainties, a set of runs for each initial condition can be used to
determine the probability of failure. The number of necessary experimental realizations
is determined by the precision of the control of initial conditions that is possible in a
basin with deterministic wavc generation capability.
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Figure 6.9 Distribution of the Time Duration Between Groups (a), and the Number of Wavesin a
Group (b); Stalistics Estimated Based on 200 Simulated Records of Wave Elevation, 30 min Each;
Threshold was @ =5 m, Time Between Groups Ar=50s
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6.3 Specifics of Validation of Solution of the Problem of Rarity
6.3.1 General

The validation of numerical tools intended to charaeterize rare events is more than
just a challenging task. Some considerations of how the prineiple of separation can be
used to assist with this task arc discussed below. However, the praetieal implementation
of these ideas remains the subjeet of future work.

Reed (2009) reviewed different aspects related to the validation of stmulation
tools in context with two related proeesses: verification and acereditation. As emphasized
by Reed. bifurcation analysis 1s important as it allows a demonstration that the theoretical
basis of a simulation tool eorreetly reproduces the qualitative behavior of the nonlinear
dynamieal system. Quantitative validation may inelude comparisons with experimental
measurements of the forces acting on ship and the resulting motions, including
trajectories for maneuvering in steep waves.

The validation of simulation tools for large motions in irregular waves presents
significant additional challenges related to the stochastic nature of the processes and the
rarity of events, and also the problems related with nonlinear behaviors. An application of
the prinetple of separation can simplify the required validation by allowing separate
validation of the non-rare and rare problems.

6.3.2 Validation of Wave Model

Initial consideration is given to the validation of the wave model. The usual
proeedure is to compare speetra for the environmental eonditions of interest. However,
this may be insufficient for the simulation of rare events.

The wave model used in a simulation tool must provide a reasonable
representation of the statistical characteristies of real waves, taking into aeccount
unavoidable uncertainties caused by the finite volume of experimental and simulated
sample data. The first issue is related to the reliable comparison of two variance
estimates, while both of them are random numbers.

A comparison of the distribution of wave elevation with the theoretieal normal
distribution may also prove useful. Because a wave-maker 1s also a nonlinear system. it
may disturb the normality of the distribution. If an experiment is carried out in natural
(irregular) waves, such as in a large-seale or full-seale environment) the normality ol the
distribution ean be disturbed by influenees due to eurrent, the shoreline, bottom effeets,
ete. If this is the case, the expeetations for the aceuracy of validation may need to be
adjusted.

Because the interest is in simulation of the nonlinear ship response, consideration
of the wave effeets on the instantaneously submerged portion of the hull is necessary.
Particularly for large, steep waves. the fluid pressures and orbital veloeities below the
frce-surface may vary significantly. and not be adequately captured by lower-order
models (Minniek, et af., 2011a). The wave model used in the simulation must have
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sufticient accuracy to represent the fluid behavior for the wave conditions of intercst.
Although difficult, model experiments may be performed to determine the velocity-field
characteristics for these types of events (Minnick, ef af. 2010; 2011; 201 1a) and then used
to validate the selected wave model.

Another aspect to be addressed is the stationarity of experimental wave data.
While it is not considered to be a problem for an experiment in a controlled environment,
the stationarity of natural waves in large-scale testing may be an issue. A metric uscd to
assess the degree of stationarity in these conditions could be very useful for validation.
One possible mctric could be the use of the “run test” to evaluatc the duration of
stationarity, as discussed by Bendat and Piersol (2010).

If wavce elevations are determined with the traditional inverse Fourier transform of
the wavce spectrum, the resulting time history is valid as a model of a stochastic process
for a limited time. This time depends on the number of frequencies considered in the
model. In the case of an insufficient number of frequencies. the restored time history of
wave elevations may suffer from self-repeating effects (Belenky and Sevastianov, 2007).
The presence of the sclf-repeating effect can be revealed by calculation of the
autocorrelation function, using the cosine Fourier transformn from the given spectrum,
with an accepted frequency sct.

6.3.3 Validation of Non-Rare Solutions

Validation of the solution for the non-rare problem has a mostly statistical
character and may be ditferent for each method.

The split-time method was originally developed to evaluatc the probability of
capsizing. However, it can be used to calculate the probability of partial stability failure
{e.g. a large roll or yaw angle) as well. The threshold used in this method is fairly high,
relative to the degree of nonlinearity of the system, and is a random value. The threshold
is located on randomly changing GZ curve and therefore, depends on the method used to
calculate the GZ curve in wavces.

A direct validation of the calculated GGZ curve in waves may not be simplc.
However, several key points can be checked experimentally. In one key stability
condition of interest, a ship model travels with the wave celerity, close to the wave crest.
The position of the ship model relative to the wave crest can be estimated from a vidco
rccord. The model has an asymmetric load and, therefore, is heeled. The angle of heel
depends on the instantaneous righting arm in waves and can be compared with calculated
value. Such an experiment could also reveal how much influcnce the local waterplanc
distortion has on the stability in waves and how accurate quasi-static calculations of the
instantancous (GZ curve (Bcelenky and Weems, 2008) really are.

Nevertheless, it may be possible to compare experimental and numcrical solutions
of thc non-rare problem using a so-called “equivalent™ threshold. This threshold is
dcfined as follows: the same number of upcrossings of roll motion through an equivalent
threshold exists as the roll process has through the random threshold. Then the rate of
upcrossing through the equivalent threshold can be compared with experimental data. A
similar approach may be taken towards the distribution of roll ratcs at upcrossing.
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Another aspect of the validation of the non-rare solution is the direct comparison
of the statistical characteristics of motions between an experiment and numerical
simulation. As the threshold is relatively high, the motion response may be influenced by
nonlinearity, including practical non-ergodicity (Belenky and Sevastianov, 2007). The
effect of practical non-ergodicity may be observed as the incrcased difference between
the statistical characteristics of diffcrent records belonging to the same ensemble. It 1s
desirable to quantify the effect of non-ergodieity, as it is unrealistic to expect that the
difference between the experiment and simulation can be smaller than the one caused by
practical non-ergodicity.

In contrast to the split-time method. the non-rare solution of the peaks-over-
threshold method is expeeted to be within the lincar range. However, the tail of the
distribution remains above the threshold. Therefore, the distribution of motions is, in fact,
truncated. This must be accounted for when making a comparison of the variance
estimate of the motion. The expected accuracy of the statistical estimate below the
threshold is higher than the estimates of the whole process. The same ean be observed
about the distributions — a comparison of the distribution of values below the threshold is
expected to vield a more definitive answer since the influence on nonlinearity and the
associated uncertainties arc minimal. The distribution of both motions and velocitics are
expected to be close to normal.

In the casc of the POT method, the distribution of the peak-based envelope values
is cxpected to be close to Rayleigh. In the case of a narrow banded process, the
derivatives of a peak-based envelope are expected to be close to normal.  In both cascs,
the statistical comparison of the cstimates of upcrossing rates is meant to be a very
important validation parameter.

In principle, the validation of the non-rare problem for the wave group mecthod is
similar to the peaks-over-threshold. The difference is that the threshold is defined in
terms of excitation, rather than the motion displacement. For this method, the distribution
of motion and its derivative at upcrossing of the excitation process are the focus for
validation.

6.3.4 Validation of Rare Solutions

To validate the solution of the rare problem in the split-time method, onc should
demonstrate that a ship eapsizes if a eritical roll rate is exceeded. As it 1s very ditficult to
control initial roll rate, it may be attempted backwards by checking the roll ratc at the
instant of threshold crossing for a time-series where capsizing was actually obscrved.
This experiment can be donc in steep regular waves, where observing capsizing is not so
difficult, and the instantancous watcrline i1s relatively casy to estimate— redueing the
uncertainty of the calculations of the GZ curve in waves and the critical roll rate.

Validation of the rarc solution for the POT method appcars to be rather straight
forward. Two distributions of peaks (or envclope peaks) above the threshold can be
compared using the Pierson chi-square goodness-of-fit test. Additionally, statistical
frequencies which excced a certain level above the threshold can be compared. A
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significant difference between them can be evaluated to determine if such a difterence is
caused by random factors.

Validation of the rare solution for the wave group method has two components.
First, it must bc demonstrated that the proposed model of wave groups is a true
representation, supported by statistical data from the realistic seaway conditions of
interest. Sceond, the numerical response of a ship being excited by the wave group agrecs
well with the behavior obtained with experimental realizations of the deterministic wave
group. This can be achieved by dircct comparison with experimental results in a basin
capable of reproducing deterministic wave groups (Bassler, ef al., 2008; 2009). However,
as mentioned previously, the precise control of initial conditions is an csscntial
component to this experimental validation and is currently being pursued.

6.4 Summary

This section contains an overview of the issues related with the dircct assessment
of dynamic stability for ship found to be vulnerable.

Subsection 6.1 considers the most general problem related to the direct
assessment of dynamic stability, Failures related to large ship responses (motions and/or
loads) in waves are rarc, and large-amplitude ship motions arc significantly influcnced by
the nonlinearity of the dynamical system. The necessity of modcling these significant
nonlinearities results in only one option for simulation — the Monte-Carlo method in the
time-domain, while the rarity of occurrence of the failure events makes direct “brute-
force™ approaches computationally cost prohibitive. The principle of separation seems to
providc an altcrnative to overcome this ditficulty. The concept is to consider, scparately,
the nonlinear phcnomena resulting in a large response and the conditions which result in
the occurrence of such phenomena. This can be achieved by introducing an intermediate
threshold, the crossing of which is frequent enough to be observable. The probabilistic
characteristics of the conditions leading to a failure are considered at the instant of the
crossing of the threshold. As a result. the problem is separated into two sub-problems:
non-rare (crossing of the threshold) and rare (evaluation of conditions at the threshold
which result in a failure).

Subscction 6.2 rcviews three methods that are being developed for dynamic
stability problems: the peaks-over-threshold method (using a fitted distribution of the
pcaks exceeding a fixed roll angle threshold), the split-time method (where the stability
failure is associated with the upcrossing of a time-variant roll-angle-threshold, with roll
rate exceeding the critical value), and the wave group method (where the ship response is
evaluated) for a series of deterministic sequence of waves with random initial conditions.

Subscction 6.3 examines specifics of validation of tools of direct assessment
keeping in mind extreme rarity of stability failures. It is shown that the principle of
separation is also applicable for validation. The advantage of applying the principle of
separation is the ability to perform validation separately for the non-rare and rarc sub-
problems. This scparation allows both the physical and statistical uncertainty to be
reduced, while also providing a robust validation technique for nonlinear phenomena.
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7 Sample Ship Population

A sample population of 17 ships was used for testing and evaluation of
vulnerability eriteria for three of the identified intaet stability failure modes (pure loss of
stability, paramctric roll, and surf-riding). The general characteristies of these ships are
given in Table 7.

Table 7 Ship Types and General Characteristices

Type Note L {m) L/B B/d D/d
Bulk Carrier 275 5.85 267 1.36
Bulk Carrier 2 145 6.34 221 1.45
Containership | Post-panamax 322.6 7.07 3.05 1.65
Containership 2 Post-panamax 376 6.53 3.57 2.36
Containership 3 Post-panamax 330 724 355 2.26
Containership 4 Panamax 283.2 8.80 251 1.70
Containership 5 Post panamax C11-type 262 6.55 3.12 1.93
Fishing Vessel 1 Japanese purse seiner -1TTC Ship A2 345 4.53 2.87 1.16
Fishing Vessel 2 21.56 3.40 258 1.21
General Cargo 1 Series 60 CB=0.7 (S60) 121.9 7.50 251 1.60
General Cargo 2 C4 type 161.2 7.05 273 1.61
LNG Carrier 267.8 6.39 3.57 229
Naval Combatant 1 ONR topside series —flared (FL} 150 8.19 342 3.09
| Naval Combatant2 | ONR topside series —tumblehome (TH) EED 1819 [342  [3.00
Passenger Ship 2764 8.04 4.03 1.75
RoPax 137 6.76 3.64 3.24
Tanker 320 SHSE 2.76 1.48

Twelve of these ships were previously considered in Peters, et al. (2010) for the
assessment of stability failures related to righting lever varnation (levels | and 2 pure loss
and parametrie roll). Histograms of the distribution of the ratio of different hull form
parameters (length-to-beam, beam-to-draft, depth-to-draft) for this sample ship
population are given in Figure 7.1, Figure 7.2 and Figure 7.3.

Containership 5 is the C11-class containership. General Cargo Ship 1 is Series 60
hull form, C3=0.7 variant (Todd, 1953). General Cargo Ship 2 is the C4 type, similar to
the one used in Paulling, ef al. (1972). Naval Combatants 1 and 2 are the ONR Topsides
Series, flared and tumblehome eonfigurations, respectively (Bishop, e al., 2005). The
RoPax is a notional vessel, similar to the one from a reported stability accident (MNZ,
2007). Fishing Vessel 1 is the ITTC Ship A2 (a Japanese purse seiner type hull form).
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8 Conclusions

The main objectives of this project were to develop vulnerability criteria, test
them, and prepare initial information on methods for direct stability assessment. The
following summarizes the achievements and gives a brief outlook on future work.

The level 1 vulnerability criteria for parametric roll is built upon the transition
solution of Mathieu equation. The proposed criteria consist of two conditions. The first
condition examines if a ship is capable of achieving speeds that provide dangerous
frequencies of encounter, while the second condition examines if the magnitude of
stability changes may result in an increase in roll angle during a certain number of cycles.

The level 2 vulnerability criterion for parametric roll is based on numerical
integration of roll equation using instantaneous GM or (Z. The mathecmatical model used
is more sophisticated, in order to avoid possible excessive conservatism. The method
accounts for irregular waves by limiting the number of waves, using a typical wave group
with properties of a spccified sea state, The criteria also includes the influence of heave
and pitch (through attitude of the wave), and the nonlinearity of the GZ curve.

The level 1 vulnerability criterion for pure loss of stability is based on geometric
characteristics of the hull, as these parameters reflect how significantly the waterlinc may
change during a wave pass and therefore. are also related with possible stability
deterioration of a ship on the wave crest.

The level 2 vulnerability criteria for pure loss of stability consist of two
conditions. The first one is based on the average time that the ship’s GAM spends below
the critical level during the wave pass. Specification of the critical level is also discussed.
The second criterion is based on the likelihood of appearance of very large loll angles
during the wave pass. Both criteria are based on the envelope presentation of irrcgular
waves. A sea state is presented as a population of regular waves associated with a
statistical weight, calculated with appropriate probability distributions.

Two alternative proposals for the level 1 vulnerability criteria for surf-riding are
considered, but both of them are based on the second speed thrcshold— above this
threshold surf-riding is inevitable in regular waves. Since the calculation of the sccond
threshold is too complex for this level, the dependence of the Froude number
corrcsponding to the second threshold on the wave stcepncss is calculated and
approximated with a regression formula. This allows formulating the level 1 criterion as
the linear dependence of the Froude number on the ship length. An alternative level |
criterion is based on the same idea of the dependence on length; it simply limits the
length of vulnerable ships to a value of 200 m.

The level 2 vulnerability criterion for surf-riding is also based on the second
threshold, which is evaluated with Melnikov's method. The criterion is formulated for
irregular waves using envelope theory, in a way similar to the level 2 vulncrability
criteria for pure loss of stability.

All six of the vulnerability criteria were tested on the sample population of 17
ships including 5 container carriers, 2 fishing vessels, 2 bulk carriers, 2 general cargo
vessels, 2 naval vesscls, a passenger RoPax ferry, a passenger cruise vessel, an LNG
carrier, and a tanker. Several of those ships had known vulnerability to parametric roll,

155




pure loss of stability, or surf-riding / broaching-to. The essenee of the testing was to see
if the proposed eriteria would be able to distinguish ships with known vulnerabilities
from ships that are known to be safe from the particular mode of stability failure. All of
the proposed eriteria were tested suceessfully. Also, all of the proposed criteria were
consistent between the levels. In other words, if a ship fails the level 2 eriterion, it
always fails the level 1 eriterion.

The modified weather criterion was eonsidered as a candidate for the level 1
vulnerability eriterion for dead ship conditions. An analysis of the assumptions of the
weather eritcrion was earried out. However, due to the complex physieal nature of ship
response in dead ship conditions, the parameters of the current weather eriterion
underwent significant calibration. This was done using a certain population of ships,
which was typical at the time of the development of current weather criterion. As a
result, the modification of the current weather eriterion may have limited applicability.
and is not advisable.

The report also includes an overview of the methods for direet stability
assessment. These are methods of numerieal simulation of model testing that are eapable
of addressing the extreme rarity of stability failurcs. without ineurring impraetical
expenses. It was shown that the application of the principle of separation allows for a
praetieal solution.

Three methods which are being developed for dynamie stability problems were
reviewed: the peaks-over-threshold method (using a fitted distribution of the peaks
exeeeding a fixed roll angle threshold). the split-time method (where the stability failure
is associated with the uperossing of a time-variant roll-angle-threshold. with roll rate
exceeding the eritical value) and the wave group method (where the ship response is
evaluated for a series of deterministie sequence of waves with random initial conditions).

The problems related to validation of these methods and tools are very
challenging. However, it was shown that the principle of separation is also applicable for
validation. The advantage of applying the principle of separation is the ability to perform
validation separately for both the non-rare and rare sub-problems. This separation allows
both the physieal and statistieal uneertainty to be reduced, while also providing a robust
validation technique for nonlinear phenomena.
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